Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the rise: ethane concentrations climbing again

24.06.2016

Global emissions of ethane, an air pollutant and greenhouse gas, are on the uptick again - Largest increases over the central and eastern United States

A team led by scientists from the University of Colorado Boulder (CU)-Boulder, supported by Andrea Pozzer from the Max Planck Institute for Chemistry in Mainz, found that a steady decline of global ethane emissions following a peak in about 1970 ended between 2005 and 2010 in most of the Northern Hemisphere and has since reversed. Between 2009 and 2014, ethane emissions in the Northern Hemisphere increased by about 400,000 tons annually, the bulk of it from North American oil and gas activity. While methane is the main component of natural gas, it can contain up to 15 percent ethane.


Modeled annual ozone increase: The rising ozone levels in summer are due to increased NMHC emissions over the USA.

Andrea Pozzer, MPI for Chemistry


Source of ethane? A gas drilling rig near Alvarado, Texas.

David R. Tribble, Creative Commons

The decline of ethane and other non-methane hydrocarbons (NMHC) starting around 1970 is believed to be primarily due to better emission controls, says lead study author Detlev Helmig, a fellow at CU-Boulder’s Institute of Arctic and Alpine Research (INSTAAR). The controls resulted in reduced emissions from oil and gas production, storage and distribution, as well as combustion exhaust from cars and trucks.

“About 60 percent of the drop we saw in ethane levels over the past 40 years has already been made up in the past five years,” said Helmig. “If this rate continues, we are on track to return to the maximum ethane levels we saw in the 1970s in only about three more years. We rarely see changes in atmospheric gases that quickly and dramatically.”

“These NMHC emission changes can potentially offset emission controls that have been implemented for curbing photochemical ozone production, and therefore can be a concern for attaining the ozone air quality standard”, says co-author Andrea Pozzer, group leader at the MPI for Chemistry. Although non-methane hydrocarbons (NMHCs) play a minor role as greenhouse gas they are crucial in the photochemical production of ozone (O3). The level of NMHC emissions is thus important for predicting changes in air quality. “We used a numerical model to assess the impact of such reversal trends in NMHC, showing that these could counteract all the effort made to reduce ozone pollution over the North Hemisphere in general and in the USA in particular”, says Andrea Pozzer. At the MPI for Chemistry he and his group develop and use numerical models to analyze and interpret observational data obtained from field campaigns and satellite remote sensing instruments.

Largest increases in ethane over areas of heavy oil and gas activity in the United States

Ethane, propane and a host of other NMHCs are released naturally by the seepage of fossil carbon deposits, volcanic activity and wildfires. But human activities now make up roughly three-quarters of the atmospheric ethane that is being emitted.

The air samples for the study were collected from more than 40 sites around the world, from Colorado and Greenland to Germany, Switzerland, New Zealand and the Earth’s Polar Regions. More than 30,000 air flasks were sampled at the National Oceanic and Atmospheric Administration’s (NOAA) Earth Systems Research Laboratory in Boulder over the past decade.

The study also showed that among the air sampling locations around the world, the largest increases in ethane and shorter-lived propane were seen over the central and eastern United States, areas of heavy oil and gas activity, said Helmig. “We concluded that added emissions from U.S. oil and gas drilling have been the primary source for the atmospheric ethane trend reversal,” he said.

The study also indicated that emissions of total NMHC in the Northern Hemisphere are now increasing by roughly 1.2 million tons annually.

The findings from the flask network, which INSTAAR and NOAA have been operating for more than 10 years, were supported by additional measurements showing very similar ethane behavior from a number of continuous global monitoring sites.

A component of natural gas, ethane plays an important role in Earth’s atmosphere. As it breaks down near Earth’s surface it can create ground-based ozone pollution, a health and environmental risk, especially in the summer months. “Ethane is the second most significant hydrocarbon emitted from oil and gas after methane,” Helmig said. “Other studies show on average there is about 10 times as much methane being emitted by the oil and gas industry as ethane.”

There is high interest by scientists in methane since it is a strong greenhouse gas, said Helmig. The new findings on ethane increases indicate there should be more research on associated methane emissions.

Original publication:
“Reversal of Global Atmospheric Ethane and Propane Trends largely due to US Oil and Natural Gas Production”: Detlev Helmig, Samuel Rossabi, Jacques Hueber, Pieter Tans, Stephen A. Montzka, Ken Masarie, Kirk Thoning, Christian-Plass Duelmer, Anja Claude, Lucy J. Carpenter, Alastair C. Lewis, Shalini Punjabi, Stefan Reimann, Martin K. Vollmer, Rainer Steinbrecher, James W. Hannigan, Louisa K. Emmons, Emmanuel Mahieu, Bruno Franco, Dan Smale, and Andrea Pozzer, Nature Geoscience, (2016), doi:10.1038/ngeo2721

(Press release of the University of Colorado Boulder with additions from MPIC)


Contact:
Mr. Andrea Pozzer, PhD
Max Planck Institute for Chemistry, Mainz
Atmospheric Chemistry Department
Phone: +49 (0)6131-305-4600
Email: andrea.pozzer@mpic.de

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/on-the-rise-ethane-concentrati...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>