Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the rise: ethane concentrations climbing again

24.06.2016

Global emissions of ethane, an air pollutant and greenhouse gas, are on the uptick again - Largest increases over the central and eastern United States

A team led by scientists from the University of Colorado Boulder (CU)-Boulder, supported by Andrea Pozzer from the Max Planck Institute for Chemistry in Mainz, found that a steady decline of global ethane emissions following a peak in about 1970 ended between 2005 and 2010 in most of the Northern Hemisphere and has since reversed. Between 2009 and 2014, ethane emissions in the Northern Hemisphere increased by about 400,000 tons annually, the bulk of it from North American oil and gas activity. While methane is the main component of natural gas, it can contain up to 15 percent ethane.


Modeled annual ozone increase: The rising ozone levels in summer are due to increased NMHC emissions over the USA.

Andrea Pozzer, MPI for Chemistry


Source of ethane? A gas drilling rig near Alvarado, Texas.

David R. Tribble, Creative Commons

The decline of ethane and other non-methane hydrocarbons (NMHC) starting around 1970 is believed to be primarily due to better emission controls, says lead study author Detlev Helmig, a fellow at CU-Boulder’s Institute of Arctic and Alpine Research (INSTAAR). The controls resulted in reduced emissions from oil and gas production, storage and distribution, as well as combustion exhaust from cars and trucks.

“About 60 percent of the drop we saw in ethane levels over the past 40 years has already been made up in the past five years,” said Helmig. “If this rate continues, we are on track to return to the maximum ethane levels we saw in the 1970s in only about three more years. We rarely see changes in atmospheric gases that quickly and dramatically.”

“These NMHC emission changes can potentially offset emission controls that have been implemented for curbing photochemical ozone production, and therefore can be a concern for attaining the ozone air quality standard”, says co-author Andrea Pozzer, group leader at the MPI for Chemistry. Although non-methane hydrocarbons (NMHCs) play a minor role as greenhouse gas they are crucial in the photochemical production of ozone (O3). The level of NMHC emissions is thus important for predicting changes in air quality. “We used a numerical model to assess the impact of such reversal trends in NMHC, showing that these could counteract all the effort made to reduce ozone pollution over the North Hemisphere in general and in the USA in particular”, says Andrea Pozzer. At the MPI for Chemistry he and his group develop and use numerical models to analyze and interpret observational data obtained from field campaigns and satellite remote sensing instruments.

Largest increases in ethane over areas of heavy oil and gas activity in the United States

Ethane, propane and a host of other NMHCs are released naturally by the seepage of fossil carbon deposits, volcanic activity and wildfires. But human activities now make up roughly three-quarters of the atmospheric ethane that is being emitted.

The air samples for the study were collected from more than 40 sites around the world, from Colorado and Greenland to Germany, Switzerland, New Zealand and the Earth’s Polar Regions. More than 30,000 air flasks were sampled at the National Oceanic and Atmospheric Administration’s (NOAA) Earth Systems Research Laboratory in Boulder over the past decade.

The study also showed that among the air sampling locations around the world, the largest increases in ethane and shorter-lived propane were seen over the central and eastern United States, areas of heavy oil and gas activity, said Helmig. “We concluded that added emissions from U.S. oil and gas drilling have been the primary source for the atmospheric ethane trend reversal,” he said.

The study also indicated that emissions of total NMHC in the Northern Hemisphere are now increasing by roughly 1.2 million tons annually.

The findings from the flask network, which INSTAAR and NOAA have been operating for more than 10 years, were supported by additional measurements showing very similar ethane behavior from a number of continuous global monitoring sites.

A component of natural gas, ethane plays an important role in Earth’s atmosphere. As it breaks down near Earth’s surface it can create ground-based ozone pollution, a health and environmental risk, especially in the summer months. “Ethane is the second most significant hydrocarbon emitted from oil and gas after methane,” Helmig said. “Other studies show on average there is about 10 times as much methane being emitted by the oil and gas industry as ethane.”

There is high interest by scientists in methane since it is a strong greenhouse gas, said Helmig. The new findings on ethane increases indicate there should be more research on associated methane emissions.

Original publication:
“Reversal of Global Atmospheric Ethane and Propane Trends largely due to US Oil and Natural Gas Production”: Detlev Helmig, Samuel Rossabi, Jacques Hueber, Pieter Tans, Stephen A. Montzka, Ken Masarie, Kirk Thoning, Christian-Plass Duelmer, Anja Claude, Lucy J. Carpenter, Alastair C. Lewis, Shalini Punjabi, Stefan Reimann, Martin K. Vollmer, Rainer Steinbrecher, James W. Hannigan, Louisa K. Emmons, Emmanuel Mahieu, Bruno Franco, Dan Smale, and Andrea Pozzer, Nature Geoscience, (2016), doi:10.1038/ngeo2721

(Press release of the University of Colorado Boulder with additions from MPIC)


Contact:
Mr. Andrea Pozzer, PhD
Max Planck Institute for Chemistry, Mainz
Atmospheric Chemistry Department
Phone: +49 (0)6131-305-4600
Email: andrea.pozzer@mpic.de

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/on-the-rise-ethane-concentrati...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>