Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oldest known rocks discovered

Canadian bedrock more than four billion years old may be the oldest known section of the Earth's early crust. Scientists at the Carnegie Institution used geochemical methods to obtain an age of 4.28 billion years for samples of the rock, making it 250 million years more ancient than any previously discovered rocks. The findings, which offer scientists clues to the earliest stages of our planet's evolution, are published in the September 26 issue of Science.*

The Nuvvuagittuq greenstone belt is an expanse of bedrock exposed on the eastern shore of Hudson Bay in northern Quebec and was first recognized in 2001 as a potential site of very old rocks. Samples of the Nuvvuagittuq rocks were collected by geologists from McGill University in Montreal and analyzed by Jonathan O'Neil, a PhD student at McGill, and Richard Carlson at the Carnegie Institution's Department of Terrestrial Magnetism.

By measuring minute variations in the isotopic composition of the rare earth elements neodymium and samarium in the rocks, O'Neil and Carlson determined that the rock samples range from 3.8 to 4.28 billion years old. The oldest dates came from rocks termed "faux amphibolite," which the researchers interpret to be ancient volcanic deposits.

"There have been older dates from Western Australia for isolated resistant mineral grains called zircons," says Carlson, "but these are the oldest whole rocks found so far." The oldest zircon dates are 4.36 billion years. Before this study, the oldest dated rocks were from a body of rock known as the Acasta Gneiss in the Northwest Territories, which are 4.03 billion years old. The Earth is 4.6 billion years old, and remnants of its early crust are extremely rare—most of it has been mashed and recycled into Earth's interior several times over by plate tectonics since the Earth formed.

The rocks are significant not only for their great age but also for their chemical composition, which resembles that of volcanic rocks in geologic settings where tectonic plates are crashing together. "This gives us an unprecedented glimpse of the processes that formed the early crust," says Carlson.

*Authors: Jonathan O'Neil, McGill University; Richard W. Carlson, Carnegie Institution; Don Francis, McGill University; Ross K. Stevenson, Université du Québec.

Richard Carlson | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>