Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Older and more diverse forests are more stable in taking up carbon dioxide

27.01.2017

Plants take up carbon dioxide (CO₂) from the atmosphere through photosynthesis. Part of it is later released again by respiration. Overall, forests tend to take up more CO₂ than they release. However, their strength to act as such carbon sink fundamentally depends on the forests’ potential to take up CO₂ through photosynthesis. This property, called photosynthetic capacity, is highly variable between years and influenced by climate variability. Writing in Nature Ecology and Evolution, researchers now report that in old forests with high species richness the effect of climate variability on photosynthetic capacity is dampened.

The total uptake of carbon dioxide by ecosystems via photosynthesis is the largest flux in the global carbon cycle. The intensity of this “natural CO₂ pump” shapes the atmospheric concentrations of the greenhouse gas. However, this key process is influenced by climate variability, which translates into year-to-year variations of CO₂ taken up by forests.


Old forest in Hessen, Germany

Achim Lueckemeyer / pixelio, www.pixelio.de


BACI logo

“Understanding the causes of the year-to-year variations in photosynthetic CO₂ uptake improves our understanding of the global carbon cycle and its sensitivity to climate”, says Markus Reichstein, co-author and Director at Max Planck Institute for Biogeochemistry in Jena, Germany.

In a search for environmental factors that determine the amplitude of the year-to-year variability in the photosynthetic capacity of forests, an international research team led by Talie Musavi of the same institute compiled data from 50 globally distributed forests across different climatic regions.

The scientists combined a variety of different data sources including ecosystem-atmosphere CO₂ fluxes from a global network of measurement sites, climate data, biodiversity information, nutrient availability, forest age, and other properties derived from satellite data, such as forest height and tree cover. The scientists then tried to identify the main factors that buffer the annual variations of photosynthetic capacity.

“The year to year variability is driven by climate but the magnitude of the year to year variability decreases in older and more diverse forests. We conclude that the stability of photosynthetic capacity is mostly controlled by forest age and species richness”, says Talie Musavi. This finding can be read as a scientific call to preserving old forests and their diversity in order to stabilize their functionality.

The study belongs to a series of activities emerging from the European project BACI “Biosphere-Atmosphere Change Index”, an international project funded in the context of EU’s Horizon2020 program. “Our project in particular aims at integrating remote sensing data archives, but also a wide range of biodiversity data, and long-term observations of ecosystem functioning.” explains Miguel Mahecha who coordinates the project at the Max Planck Institute for Biogeochemistry. BACI is developing methods and seeks to foster research into better understanding how our ecosystems interact with the atmosphere.

Original publication
Talie Musavi, Mirco Migliavacca, Markus Reichstein, Jens Kattge, Christian Wirth, T. Andrew Black, Ivan Janssens, Alexander Knohl, Denis Loustau, Olivier Roupsard, Andrej Varlagin, Serge Rambal, Alessandro Cescatti, Damiano Gianelle, Hiroaki Kondo, Rijan Tamrakar and Miguel D. Mahecha. (2017). Stand age and species richness dampen interannual variation of ecosystem-level photosyn-thetic capacity. Nature Ecology & Evolution.
http://dx.doi.org/10.1038/s41559-016-0048

BACI project reference:
http://baci-h2020.eu/index.php/

Contact
Talie Musavi
Email: tmusavi@bgc-jena.mpg.de

Mirco Migliavacca
Phone: +49 (0)3641 57 6281
Email: mmiglia@bgc-jena.mpg.de

Miguel Mahecha
Phone: +49 (0)3641 57 6265
Email: mmahecha@bgc-jena.mpg.de

Institutions that participated in the study

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
Institute of Special Botany and Functional Biodiversity, University of Leipzig, 04103 Leipzig, Germany
Biometeorology and Soil Physics Group, Faculty of Land and Food Systems, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, Canada
University of Antwerpen, Department of Biology, 2610 Wilrijk, Belgium
Bioclimatology, Georg-August University of Göttingen, 37077 Göttingen, Germany
INRA, ISPA, Centre de Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, 33140 Villenave-d’Ornon, France.
UMR Ecologie Fonctionnelle and Biogéochimie des Sols et Agroécosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier, France
A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, UMR 5175, CNRS, Montpellier, France
Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
European Commission, Joint Research Centre, Directorate for Sustainable Resources, 21027, Ispra, Italy
Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Center, Fondazione Edmund Mach, 38010 San Michele all’ Adige Trento, Italy
Foxlab Joint CNR-FEM Initiative, Via E. Mach 1, 38010 San Michele all'Adige, Italy
National Institute of Advanced Industrial Science and Technology (AIST), Onogawa, Tsukuba, Ibaraki, 305-8561, Japan

Weitere Informationen:

http://dx.doi.org/10.1038/s41559-016-0048 Original publication
http://baci-h2020.eu/index.php/ BACI project webpage

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>