Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Older and more diverse forests are more stable in taking up carbon dioxide

27.01.2017

Plants take up carbon dioxide (CO₂) from the atmosphere through photosynthesis. Part of it is later released again by respiration. Overall, forests tend to take up more CO₂ than they release. However, their strength to act as such carbon sink fundamentally depends on the forests’ potential to take up CO₂ through photosynthesis. This property, called photosynthetic capacity, is highly variable between years and influenced by climate variability. Writing in Nature Ecology and Evolution, researchers now report that in old forests with high species richness the effect of climate variability on photosynthetic capacity is dampened.

The total uptake of carbon dioxide by ecosystems via photosynthesis is the largest flux in the global carbon cycle. The intensity of this “natural CO₂ pump” shapes the atmospheric concentrations of the greenhouse gas. However, this key process is influenced by climate variability, which translates into year-to-year variations of CO₂ taken up by forests.


Old forest in Hessen, Germany

Achim Lueckemeyer / pixelio, www.pixelio.de


BACI logo

“Understanding the causes of the year-to-year variations in photosynthetic CO₂ uptake improves our understanding of the global carbon cycle and its sensitivity to climate”, says Markus Reichstein, co-author and Director at Max Planck Institute for Biogeochemistry in Jena, Germany.

In a search for environmental factors that determine the amplitude of the year-to-year variability in the photosynthetic capacity of forests, an international research team led by Talie Musavi of the same institute compiled data from 50 globally distributed forests across different climatic regions.

The scientists combined a variety of different data sources including ecosystem-atmosphere CO₂ fluxes from a global network of measurement sites, climate data, biodiversity information, nutrient availability, forest age, and other properties derived from satellite data, such as forest height and tree cover. The scientists then tried to identify the main factors that buffer the annual variations of photosynthetic capacity.

“The year to year variability is driven by climate but the magnitude of the year to year variability decreases in older and more diverse forests. We conclude that the stability of photosynthetic capacity is mostly controlled by forest age and species richness”, says Talie Musavi. This finding can be read as a scientific call to preserving old forests and their diversity in order to stabilize their functionality.

The study belongs to a series of activities emerging from the European project BACI “Biosphere-Atmosphere Change Index”, an international project funded in the context of EU’s Horizon2020 program. “Our project in particular aims at integrating remote sensing data archives, but also a wide range of biodiversity data, and long-term observations of ecosystem functioning.” explains Miguel Mahecha who coordinates the project at the Max Planck Institute for Biogeochemistry. BACI is developing methods and seeks to foster research into better understanding how our ecosystems interact with the atmosphere.

Original publication
Talie Musavi, Mirco Migliavacca, Markus Reichstein, Jens Kattge, Christian Wirth, T. Andrew Black, Ivan Janssens, Alexander Knohl, Denis Loustau, Olivier Roupsard, Andrej Varlagin, Serge Rambal, Alessandro Cescatti, Damiano Gianelle, Hiroaki Kondo, Rijan Tamrakar and Miguel D. Mahecha. (2017). Stand age and species richness dampen interannual variation of ecosystem-level photosyn-thetic capacity. Nature Ecology & Evolution.
http://dx.doi.org/10.1038/s41559-016-0048

BACI project reference:
http://baci-h2020.eu/index.php/

Contact
Talie Musavi
Email: tmusavi@bgc-jena.mpg.de

Mirco Migliavacca
Phone: +49 (0)3641 57 6281
Email: mmiglia@bgc-jena.mpg.de

Miguel Mahecha
Phone: +49 (0)3641 57 6265
Email: mmahecha@bgc-jena.mpg.de

Institutions that participated in the study

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
Institute of Special Botany and Functional Biodiversity, University of Leipzig, 04103 Leipzig, Germany
Biometeorology and Soil Physics Group, Faculty of Land and Food Systems, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, Canada
University of Antwerpen, Department of Biology, 2610 Wilrijk, Belgium
Bioclimatology, Georg-August University of Göttingen, 37077 Göttingen, Germany
INRA, ISPA, Centre de Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, 33140 Villenave-d’Ornon, France.
UMR Ecologie Fonctionnelle and Biogéochimie des Sols et Agroécosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier, France
A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, UMR 5175, CNRS, Montpellier, France
Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
European Commission, Joint Research Centre, Directorate for Sustainable Resources, 21027, Ispra, Italy
Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Center, Fondazione Edmund Mach, 38010 San Michele all’ Adige Trento, Italy
Foxlab Joint CNR-FEM Initiative, Via E. Mach 1, 38010 San Michele all'Adige, Italy
National Institute of Advanced Industrial Science and Technology (AIST), Onogawa, Tsukuba, Ibaraki, 305-8561, Japan

Weitere Informationen:

http://dx.doi.org/10.1038/s41559-016-0048 Original publication
http://baci-h2020.eu/index.php/ BACI project webpage

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>