Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oiled with water? Understanding low friction fault line movements that do not cause earthquakes

05.12.2011
Tokyo Institute of Technology researchers uncover the physical interactions between water and minerals that might explain why some fault lines slip without causing catastrophic earthquakes.

A growing area of geosciences research focuses on the interactions between different liquids and minerals present on Earth. The presence of water, for example, can have a profound effect on erosion, mineral composition, and the frictional strength of fault lines on which earthquakes occur. For this reason, researchers strive to understanding the physical and chemical properties of interfaces where water or saltwater is in contact with rocks and minerals, and how they might affect fault line dynamics.

Considerable work in this area has been carried out by Hiroshi Sakuma at the Tokyo Institute of Technology, with colleagues spanning several different disciplines from a number of institutions in Japan, including Tohoku University in Sendai and Ochanomizu University in Tokyo. Over the past 5 years, Sakuma and his team have investigated many aspects of the interactions between water, salt solutions, and mica – a mineral rock formation frequently found in faultlines all over the globe.

“Mica has a crystal structure representative of many other clay minerals,” explains Sakuma. “Clay minerals including mica are often in contact with saltwater in creep fault zones, for example the San Andreas fault in California.”

Initially, Sakuma and colleagues studied the physical properties of saltwater confined between mica surfaces. They used shear resonance measurements to show that the water, when squeezed into a tiny crack thinner than a couple of nanometers, became more viscous, thereby enhancing the lubrication between the mica layers.

Sakuma’s team then went on to investigate the influence of ions of different elements when mixed with water molecules on mica surfaces. Lithium, sodium, potassium, caesium, and hydronium ions were analysed using molecular dynamics simulations. Sodium ions proved to be the most effective at bonding with the mica surfaces. The ions maintain layers of water molecules around them, thereby enhancing the lubricity between mica sheets.

These results prompted Sakuma to investigate further the processes involved between sodium ions, water molecules, and mica. In their newest published research, Sakuma, together with colleagues from Ochanomizu University, the High Energy Accelerator Research Organisation in Ibaraki, and Nippon Sheet Glass Company in Hyogo, analysed the complete structure of hydrated sodium ions and water molecules on mica surfaces.

The researchers used X-ray surface scattering in combination with molecular dynamics simulations. Sakuma explains: “X-ray surface scattering measurements are powerful tools to reveal the electron density of solid-liquid interfaces. However it is difficult to reveal the atomic-species distribution of the interfaces. Our method, combining the X-ray measurements with simulations, provides precise information about the distribution of atomic species at the interface, with sub-angstrom resolution.”

The results revealed how the sodium ions, once bonded with opposite facing mica surfaces, form a ‘bubble’ or ‘shell’ of water molecules around them. This structure then acts rather like a ball-bearing covered in oil, thereby lessening the friction between the two mica surfaces should they start to move against each other. Sakuma explains: “We found that the water in the first hydration shell of the adsorbed sodium ions on a mica surface shows high lubricity. This implies that the low frictional strength of the layered clay minerals is due to this lubrication.”

The results suggest that a clay rich, water-filled fault in an earthquake zone could move without much friction, meaning the chance of a devastating earthquake is much reduced. This research is, however, still very much at fundamental physics level, meaning that no direct application can be made as yet in effective earthquake disaster management.

Sakuma hopes to further deepen understanding of water-salt-mica interfaces in future by investigating “the structure of the interface at high pressure and temperature, corresponding to the conditions of actual creep faults.”

References

1. Sakuma, H., Otsuki, K., & Kurihara, K. Viscosity and lubricity of aqueous NaCl solution confined between mica surfaces studied by shear resonance measurement. Physical Review Letters 96, 046104 (2006)

doi: 10.1103/PhysRevLett.96.046104

2. Sakuma, H. & Kawamura, K. Structure and dynamic of water on Li+-, Na+-, K+-, Cs+-, H3O+- exchanged muscovite surfaces: a molecular dynamics study. Geochimica et Cosmochimica Acta 75, 63-81 (2011)

doi: 10.1016/j.gca.2010.10.007

3. Sakuma, H., Kondo, T., Nakao, H., Shiraki, K., & Kawamura, K. Structure of hydrated sodium ions and water molecules adsorbed on the mica/water interface. The Journal of Physical Chemistry C 115, 15959-15964 (2011)

doi: 10.1021/jp111936s

Further information:
Hidekazu Ueda and Yukiko Tokida
Center for Public Information
Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: kouhou@jim.titech.ac.jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975
Fax: +81-3-5734-3661
About Tokyo Institute of Technology
As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.

Hidekazu Ueda | Research asia research news
Further information:
http://www.titech.ac.jp/english/
http://www.researchsea.com

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>