Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Off-rift volcanoes explained

24.03.2014

Rift valleys are large depressions formed by tectonic stretching forces.

Volcanoes often occur in rift valleys, within the rift itself or on the rift flanks as e.g. in East Africa. The magma responsible for this volcanism is formed in the upper mantle and ponds at the boundary between crust and mantle.


Schematic diagram illustrating the formation of off-rift volcanoes (graphics: R. Milkereit, GFZ)


Newly exposed fault scarp that formed from dike induced faulting during the September 2005 rifting event in the Dabbahu segment in the Afar rift. (Photo: Derek Keir, National Oceanography Centre Southampton, University of Southampton)

For many years, the question of why volcanoes develop outside the rift zone in an apparently unexpected location offset by tens of kilometers from the source of molten magma directly beneath the rift has remained unanswered. A team of scientists from the GFZ German Research Centre for Geosciences, University of Southampton and University Roma Tre (Italy) have shown that the pattern of stresses in the crust changes when the crust thins due to stretching and becomes gravitationally unloaded.

As a consequence of this stress pattern, the path of the magma pockets ascending from the ponding zone is deviated diagonally to the sides of the rift. Eventually, the magma pockets emerge at distances of tens, sometime hundreds of kilometers from the rift axis, creating the so-called off-rift volcanoes.

... more about:
»GFZ »Geosciences »Helmholtz »depth »extension »magma »mantle »volcanism

The scientists used a numerical model that simulates the propagation of the magma pockets, called dikes, to demonstrate a previously unknown control of rift topography on the trajectory of magma transport.

The surface location of the volcanoes depend on the geometry of the rift valleys, explains GFZ researcher Francesco Maccaferri: “We find that in broad, shallow rift valleys, the magma will ascend vertically above the source of magma. In deep, narrow valleys the modification of the stress pattern is very intense and the magma path is strongly deviated.” Since in the latter case the initial path of the dikes is almost horizontal, in extreme cases the magma can arrest as a horizontal intrusion and form a pile of stacked sheet-like bodies without any surface volcanism. This is confirmed in rift valleys around the world.

The phenomenon is a dynamic one: “If the tectonic extension continues and the rift reaches a mature stage of evolution, the pile of the magma sheets can reach the shallow crust. Our model predicts correctly that additional magma-filled sheets will then orient vertically and propagate laterally along the middle of the rift.”adds Eleonora Rivalta from GFZ.

Rift valleys are one of the main tectonic features of our planet. They form both between diverging tectonic plates or within plates which undergo tectonic extension. The generation of magma at depth beneath rift valleys and the divergence of the plates through magma intrusions has been an object of research for tens of years, but the link between deep sources and surface volcanism have previously been missing. The new model may be invoked to explain both off-rift volcanism or the lack of volcanism in million years old rift valleys in Europe.

Francesco Maccaferri, Eleonora Rivalta, Derek Keir, Valerio Acocella: “Off-rift volcanism in rift zones determined by crustal unloading", Nature geoscience, 23.03.2014, DOI: 10.1038/NGEO2110

Franz Ossing
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Deutsches GeoForschungsZentrum
- Head, Public Relations -
Telegrafenberg
14473 Potsdam / Germany
e-mail: ossing@gfz-potsdam.de
Tel. +49 (0)331-288 1040
Fax +49 (0)331-288 1044
http://www.gfz-potsdam.de/

Franz Ossing | GFZ Potsdam

Further reports about: GFZ Geosciences Helmholtz depth extension magma mantle volcanism

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>