Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Odds of Tipping

17.03.2009
According to the estimates of climate scientists in a newly published expert survey, there is more than a 50% chance of major changes in the global climate system if global warming proceeds at the current rate.

Should average global temperature increase by more than 4 degrees Celsius, one or several parts of the climate system could tip to a new state. Experts' estimates of the probability of tipping vary, and it also remains uncertain by how much global temperature will increase in the future.

But - as the authors report in the Proceedings of the National Academy of Sciences online early edition - these uncertainties do not imply that far-reaching events caused by global warming are unlikely.

An international team of researchers lead by Elmar Kriegler of the Potsdam Institute for Climate Impact Research (PIK) elicited the opinions of 52 climate scientists about the sensitivity of five so-called tipping elements. Tipping elements are parts of the climate system which, through human interference, can change quickly and irreversibly. In the current study the sensitivity of the following tipping elements is evaluated: Atlantic thermohaline circulation, El Niño phenomenon, Amazon rainforest, Greenland, and West Antarctic ice sheets.

43 experts estimated upper and lower bounds for the probability of those elements undergoing dramatic changes, given three different global warming scenarios: a warming by less than 2°C, by 2 - 4°C, or by an extreme of 4 - 8°C until 2200. "Strong global warming of more than 4°C by the year 2200 so far does appear to be a clear possibility", Kriegler says.

The analysis of the survey is now published in the online version of the US American "Proceedings of the National Academy of Sciences". If temperatures were to increase by 2 - 4°C then - so the scientists estimate - at least one element will tip with a one in six chance. If global temperatures were to increase even further then this probability increases to more than one in two (56%). In such a warming scenario the majority of respondents consider the probability of a complete melting of the Greenland ice sheet and a large-scale die-back of the Amazon rainforest to be particularly high. "The results show that the estimated probabilities increase strongly parallel to the progressive scenarios of future warming" Kriegler summarises the expert survey.

The authors write that expert elicitations have occasionally been criticised for not contributing new scientific information as long as they are not backed by new data, modelling or theories. However, in the context of risk analysis such surveys have proven to be a useful tool to summarise expert knowledge for decision makers. "We do not prescribe society specific climate policy measures," says Hans Joachim Schellnhuber, director of PIK, and coauthor of the article. "But the results of the survey provide further evidence for the need of ambitious climate protection in order to minimize the risks of far-reaching consequences for our entire planet."

Reorganization of the Atlantic Thermohaline Circulation: Most of the experts believe that the ocean circulation will remain stable under small future warming. However, if global temperatures were to rise by more than 4°C experts see a significant increase in the probability of a collapse of the existing system of Atlantic circulation.

Increased occurrence of the El-Niño phenomenon and large-scale die-off of the Amazon rainforest: Even if intense warming should occur some experts do not expect any change of the El-Niño phenomenon. Others estimate that El-Niño will become more frequent. The continued existence of the Amazon rainforest depends on these potential changes, because the El-Niño phenomenon causes drought in the Amazon region. In case of increased recurrences of El-Niño models indicate that large parts of the rainforest will die off. Most experts assume a one in two chance for a large-scale die-back of the rainforest in case of warming by more than 4°C.

Complete melting of the Greenland Ice Sheet: Even for a warming by less than 2°C some of the respondents see the risk of a complete melting of the Greenland ice sheet. For a strong increase of global temperature by more than 4°C almost all experts expect a melting of the ice sheet with a high probability of more than one in two.

Disintegration of the West Antarctic ice sheet: There are significant uncertainties in our knowledge about the response of the ice sheet to further warming. Therefore, experts differ in their estimates of the probability of its disintegration. Higher probability estimates may have been motivated by recent findings of acceleration of inland glaciers following the disintegration of ice shelfs on the West Antarctic peninsula.

Article: Elmar Kriegler, Jim W. Hall, Hermann Held, Richard Dawson, and Hans Joachim Schellnhuber (2009). Imprecise probability assessment of tipping points in the climate system. Proceedings of the National Academy of Sciences, Online Early Edition

For further information please contact the PIK press office:
Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de
The Potsdam Institute for Climate Impact Research (PIK) is a member of the Leibniz Association, a network of 86 scientifically, legally and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic and thematically oriented research and offer scientific service of national significance and strive for scientific solutions for major social challenges.

Uta Pohlmann | idw
Further information:
http://www.leibniz-association.eu
http://www.pik-potsdam.de
http://www.pik-potsdam.de/news/press-releases/tipping-elements-in-the-earths-climate-system?set_language=en

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>