Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceans to get noisier as they become more acidic

30.09.2008
As mounting levels of human-generated carbon dioxide make the oceans warmer and more acidic, the seas will transform in yet another, unexpected way -- sounds will travel farther underwater, a new study concludes. A corresponding increase in background noise in the oceans could affect the behavior of marine mammals, the researchers say.

Conservative projections by the United Nations Intergovernmental Panel on Climate Change (IPCC) suggest that the chemistry of seawater could change by 0.3 pH units by 2050. If so, this intensification of ocean acidity would allow sounds to travel up to 70 percent farther underwater than in today's oceans.

The projected impact on ocean sound emerges from calculations by Keith Hester and his colleagues at the Monterey Bay Aquarium Research Institute (MBARI) in Moss Landing, Calif. The researchers will publish their findings on Wednesday, 1 October 2008, in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

Ocean chemists have known for decades that the absorption of sound in seawater changes with the chemistry of the water itself. As sound moves through seawater, it causes groups of atoms to vibrate, absorbing sounds at specific frequencies. This involves a variety of chemical interactions that are not completely understood. However, the overall effect is strongly controlled by the acidity of the seawater.

The bottom line is this: the more acidic the seawater, the less low- and mid-frequency sound it absorbs.

Thus, as the oceans become more acidic, sounds will travel farther underwater so the level of underwater sound will rise. According to Hester's calculations, such a change in chemistry will have the greatest effect on sounds below about 3,000 cycles per second (two and one half octaves above "middle C" on a piano).

This range of sounds includes most of the "low frequency" sounds used by marine mammals in finding food and mates. It also includes many of the underwater sounds generated by industrial and military activity, as well as by boats and ships. Such human-generated underwater noise has increased dramatically over the last 50 years, as human activities in the ocean have increased.

The MBARI researchers say that sound already may be traveling 10 percent farther in the oceans than it did a few hundred years ago.

However, they predict that by 2050, under conservative projections of ocean acidification, sounds could travel as much as 70 percent farther in some ocean areas (particularly in the Atlantic Ocean). This could dramatically improve the ability of marine mammals to communicate over long distances. It could also increase the amount of background noise that they have to live with.

There are no long-term records of sound absorption over large ocean areas. However, the researchers cite a study off the coast of California which showed an increase in ocean noise between 1960 and 2000 that was not directly attributable to known factors such as ocean winds or ships.

Hester's research shows how human activities are affecting the Earth in far-reaching and unexpected ways. As the researchers put it in their paper, "The waters in the upper ocean are now undergoing an extraordinary transition in their fundamental chemical state at a rate not seen on Earth for millions of years, and the effects are being felt not only in biological impacts but also on basic geophysical properties, including ocean acoustics."

This research was supported by grants from the David and Lucile Packard Foundation.

Title:
"A noisier ocean at lower pH"
Authors:
Keith C. Hester, Edward T. Peltzer, William J. Kirkwood and Peter G.
Brewer: Monterey Bay Aquarium Research Institute, Moss Landing, California, USA.
Citation:
Hester, K. C., E. T. Peltzer, W. J. Kirkwood, and P. G. Brewer (2008), Unanticipated consequences of ocean acidification: A noisier ocean at lower pH, Geophys. Res. Lett., 35, L19601, doi:10.1029/2008GL034913.
Contact information for coauthors:
Keith Hester, Postdoctoral Fellow, phone: +1 (831) 775-2072, email:
khester@mbari.org

Peter Brewer, Senior Scientist, phone: +1 (831) 775-1706, email:
brpe@mbari.org

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>