Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ocean currents speed melting of Antarctic ice

A major glacier is undermined from below

Stronger ocean currents beneath West Antarctica's Pine Island Glacier Ice Shelf are eroding the ice from below, speeding the melting of the glacier as a whole, according to a new study in Nature Geoscience.

A growing cavity beneath the ice shelf has allowed more warm water to melt the ice, the researchers say—a process that feeds back into the ongoing rise in global sea levels. The glacier is currently sliding into the sea at a clip of four kilometers (2.5 miles) a year, while its ice shelf is melting at about 80 cubic kilometers a year - 50 percent faster than it was in the early 1990s - the paper estimates.

"More warm water from the deep ocean is entering the cavity beneath the ice shelf, and it is warmest where the ice is thickest," said study's lead author, Stan Jacobs, an oceanographer at Columbia University's Lamont-Doherty Earth Observatory.

In 2009, Jacobs and an international team of scientists sailed to the Amundsen Sea aboard the icebreaking ship Nathaniel B. Palmer to study the region's thinning ice shelves—floating tongues of ice where landbound glaciers meet the sea. One goal was to study oceanic changes near the Pine Island Glacier Ice Shelf, which they had visited in an earlier expedition, in 1994. The researchers found that in 15 years, melting beneath the ice shelf had risen by about 50 percent. Although regional ocean temperatures had also warmed slightly, by 0.2 degrees C or so, that was not enough to account for the jump.

The local geology offered one explanation. On the same cruise, a group led by Adrian Jenkins, a researcher at British Antarctic Survey and study co-author, sent a robot submarine beneath the ice shelf, revealing an underwater ridge. The researchers surmised that the ridge had once slowed the glacier like a giant retaining wall. When the receding glacier detached from the ridge, sometime before the 1970s, the warm deep water gained access to deeper parts of the glacier. Over time, the inner cavity grew, more warm deep water flowed in, more melt water flowed out, and the ice thinned. With less friction between the ice shelf and seafloor, the landbound glacier behind it accelerated its slide into the sea. Other glaciers in the Amundsen region have also thinned or widened, including Thwaites Glacier and the much larger Getz Ice Shelf.

One day, near the southern edge of Pine Island Glacier Ice Shelf, the researchers directly observed the strength of the melting process as they watched frigid, seawater appear to boil on the surface like a kettle on the stove. To Jacobs, it suggested that deep water, buoyed by added fresh glacial melt, was rising to the surface in a process called upwelling. Jacobs had never witnessed upwelling first hand, but colleagues had described something similar in the fjords of Greenland, where summer runoff and melting glacier fronts can also drive buoyant plumes to the sea surface.

In recent decades, researchers have found evidence that Antarctica is getting windier, and this may also help explain the changes in ocean circulation. Stronger circumpolar winds would tend to push sea ice and surface water north, says Jacobs. That in turn, would allow more warm water from the deep ocean to upwell onto the Amundsen Sea's continental shelf and into its ice shelf cavities.

Pine Island Glacier, among other ice streams in Antarctica, is being closely watched for its potential to redraw coastlines worldwide. Global sea levels are currently rising at about 3 millimeters (.12 inches) a year. By one estimate, the total collapse of Pine Island Glacier and its tributaries could raise sea level by 24 centimeters (9 inches).

The paper adds important and timely insights about oceanic changes in the region, says Eric Rignot, a professor at University of California at Irvine and a senior research scientist at NASA's Jet Propulsion Laboratory. "The main reason the glaciers are thinning in this region, we think, is the presence of warm waters," he said. "Warm waters did not get there because the ocean warmed up, but because of subtle changes in ocean circulation. Ocean circulation is key. This study reinforces this concept."

The study received funding from the US National Science Foundation and the UK National Environment Research Council.

Copies of the paper "Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf" are available from the authors or the journal Nature Geoscience,

Scientist contacts:

Stan Jacobs +1 845 365-8326;

Adrian Jenkins +44-1223-221493);

More information:

Kim Martineau, Lamont-Doherty Earth Observatory, Columbia University (845) 365-8708;

The Earth Institute, Columbia University mobilizes the sciences, education and public policy to achieve a sustainable earth. Through interdisciplinary research among more than 500 scientists in diverse fields, the Institute is adding to the knowledge necessary for addressing the challenges of the 21st century and beyond. With over two dozen associated degree curricula and a vibrant fellowship program, the Earth Institute is educating new leaders to become professionals and scholars in the growing field of sustainable development. We work alongside governments, businesses, nonprofit organizations and individuals to devise innovative strategies to protect the future of our planet.

Lamont-Doherty Earth Observatory, a member of The Earth Institute, is one of the world's leading research centers seeking fundamental knowledge about the origin, evolution and future of the natural world. More than 300 research scientists study the planet from its deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean. From global climate change to earthquakes, volcanoes, nonrenewable resources, environmental hazards and beyond, Observatory scientists provide a rational basis for the difficult choices facing humankind in the planet's stewardship.

Kim Martineau | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>