Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean currents push phytoplankton -- and pollution -- around the globe faster than thought

20.04.2016

The billions of single-celled marine organisms known as phytoplankton can drift from one region of the world's oceans to almost any other place on the globe in less than a decade, Princeton University researchers have found.

Unfortunately, the same principle can apply to plastic debris, radioactive particles and virtually any other man-made flotsam and jetsam that litter our seas, the researchers found. Pollution can thus become a problem far from where it originated within just a few years.


Princeton University researchers found that ocean currents can carry objects to almost any place on the globe in less than a decade, faster than previously thought. The model above shows how phytoplankton traveling on ocean currents would spread over a three-year period. The researchers "released" thousands of particles representing phytoplankton and garbage from a starting point (green) stretching north to south from Greenland to the Antarctic Peninsula. The colors to the left indicate low (blue) or high (red) concentration of particles. Over time, the particles spiral out to reach the North and South Pacific, Europe, Africa and the Indian Ocean.

Credit: Animation by Bror Jönsson, Department of Geosciences

The finding that objects can move around the globe in just 10 years suggests that ocean biodiversity may be more resilient to climate change than previously thought, according to a study published this week in the journal Nature Communications. Phytoplankton form the basis of the marine food chain, and their rapid spread could enable them to quickly repopulate areas where warming seas or ocean acidification have decimated them.

"Our study shows that the ocean is quite efficient in moving things around," said Bror Fredrik Jönsson, an associate research scholar in Princeton's Department of Geosciences, who conducted the study with co-author James R. Watson, a former Princeton postdoctoral researcher who is now a researcher at Stockholm University.

"This comes as a surprise to a lot of people, and in fact we spent about two years confirming this work to make sure we got it right," Jönsson said.

One of the strengths of the model is its approach of following phytoplankton wherever they go throughout the world rather than focusing on their behavior in one region, Jönsson said. Because most marine organisms are mobile, this particle-tracking approach can yield new insights compared to the approach of studying one area of ocean.

The resulting model works for objects that have no ability to control their movement such as phytoplankton, bacteria and man-made debris. Organisms that can control their movement even a small amount -- such as zooplankton, which can control their vertical position in water -- are not accounted for in the model. Nor does the model apply to objects such as boats that protrude above the water and can be pushed by surface winds.

The team applied a computer algorithm to calculate the fastest route an object can travel via ocean currents between various points on the globe. Most previous studies looked only at movement of phytoplankton within regions. The resulting database, Jönsson said, is analogous to a mileage chart one would find on a roadmap or atlas showing the distance between two cities, except that Jönsson and Watson are indicating the speed of travel between different points.

The researchers confirmed that the travel times calculated by their model were similar to the time it took real objects accidentally dumped into the ocean to be carried by currents. For instance, 29,000 rubber ducks and other plastic bath toys toppled off a Chinese freighter in 1992 and have since been tracked as a method of understanding ocean currents. A similar utility has stemmed from the "Great Shoe Spill of 1990" when more than 60,000 Nike athletic shoes plunged into the ocean near Alaska and have been riding the currents off the Pacific Northwest ever since. The researchers' model also matched the amount of time it took radioactive particles to reach the West Coast of the United States from Japan's Fukushima I Nuclear Power Plant, which released large amounts of radioactive materials into the Pacific Ocean following heavy damage from a tsunami in March 2011. The actual travel time of the materials was 3.6 years; the model calculated it would take 3.5 years.

To create the model, Jönsson and Watson obtained surface-current data from a database of modeled global surface currents developed at the Massachusetts Institute of Technology and housed at NASA's Jet Propulsion Laboratory in California. Into this virtual world they released thousands of particles that represented phytoplankton and then ran simulations multiple times, comparing past and present runs for accuracy and making tweaks to improve the model. They eventually tracked more than 50 billion positions of particles, which is just a fraction of the actual number of phytoplankton in the ocean.

Because phytoplankton mainly reproduce asexually -- meaning that one organism alone can produce offspring -- only one individual needs to reach a new area to colonize it. This fact led the team to look at the shortest time it takes to get around the world rather than the average time. "The rule for our phytoplankton was 'drive at fast as possible,'" Jönsson said.

To cut down the computing resources needed to track the particles, the researchers calculated the fastest way to get from one place to another using a shortcut commonly employed by smartphone apps and in-car navigation systems. The method, called "Dijkstra's algorithm" after the late Dutch computer scientist Edsger Dijkstra who developed it in the 1950s, calculates how to get from A to C if you know the route from A to B and B to C.

"Dijkstra's algorithm is a way of optimizing for the shortest path between two positions when you have a network of possible locations, and we used it to find pathways when there was no direct link from one region to another," Watson said.

Although each step in the pathway from one region to another may be unlikely, the fact that a single phytoplankton organism, which lives only a few weeks, can give rise to millions of offspring means that even unlikely paths will have some followers.

Professor of Marine Sciences Per Jonsson at the University of Gothenburg Center for Sea and Society in Sweden said that the analysis offers a new perspective on global connectivity. "This is the first attempt to identify time scales of connectivity and possible dispersal barriers for plankton across all oceans," said Jonsson, who had no role in the research and is not related to study author Bror Jönsson. "The general message is that all parts of the ocean surface are connected on surprisingly short time scales.

"This implies that regional declines in plankton fitness due to climate change may be buffered by relatively rapid immigration coupled with community sorting or evolutionary change," Jonsson continued. "The authors also offer a practical and predictive tool for a range of studies regarding global ocean dispersal, including the spread of contaminants and marine litter."

###

The paper, "The timescales of global surface-ocean connectivity," was published online in-advance-of-print April 19 in the journal Nature Communications. The work was funded in part by the National Science Foundation, NASA and the Nippon Foundation-University of British Columbia's Nereus Program.

Media Contact

Morgan Kelly
mgnkelly@princeton.edu
609-258-5729

 @Princeton

http://www.princeton.edu 

Morgan Kelly | EurekAlert!

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>