Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New observations on the San Andreas Fault in Santa Cruz Mountains, Seattle Fault Zone

31.05.2012
BSSA tip sheet for June 2012 issue

San Andreas Fault in Santa Cruz Mountains – large quakes more frequent than previously thought

Recent paleoseismic work has documented four surface-rupturing earthquakes that occurred across the Santa Cruz Mountains section of the San Andreas Fault (SAF) in the past 500 years. The research, conducted by the U.S. Geological Survey, with assistance from the California Geological Survey, suggests an average recurrence rate of 125 years, indicating the seismic hazard for the area may be significantly higher than currently recognized. The observations help fill a gap in data on the seismic activity of the SAF in northern California, particularly south of San Francisco.

Geologists Thomas Fumal and Tim Dawson conducted paleoseismic studies at Mill Canyon, near Watsonville, California. They documented evidence for four earthquakes, the most recent being the 1906 M 7.8 San Francisco event. They conclude that each of the three earthquakes prior to the 1906 quake was a large magnitude event that likely ruptured most, or all, of the Santa Cruz Mountains segment, producing similar physical deformation as the 1906 quake.

In addition to filling in a data gap about the SAF in this region, this research adds to the understanding of how the SAF behaves, in particular whether individual segments of the fault system can produce destructive earthquakes and how often. This study joins to a growing body of work that suggests the SAF produces a wider array of magnitudes than previously appreciated in the current seismic hazard models.

"Timing of Large Earthquakes during the past 500 years along the Santa Cruz Mountains Segment of the San Andreas Fault at Mill Canyon, near Watsonville, California," published by BSSA, Vol. 102:3.

Author: Thomas Fumal, U.S. Geological Survey.

Media contact: timothy.dawson@conservation.ca.gov

Seattle Fault Zone – 900-930 AD earthquake larger than previously thought

A fresh look at sedimentary evidence suggests the 900-930 AD rupture of the Seattle fault possibly produced a larger earthquake than previously recognized. The Seattle fault zone, a series of active-east-west trending thrust faults, poses seismic threat to the Puget Sound region.

The 900-930 AD rupture is the only known large earthquake along the Seattle Fault, making geological records of prehistoric events the only clues to the earthquake potential of the fault.

While a graduate student at the University of Washington, Maria Arcos looked at tsunami and debris flow deposits – both evidence of a paleo-quake – in the coastal marsh at Gorst, Washington. She also identified evidence of at least three meters of uplift that preceded a tsunami, which was followed by a sandy debris flow from Gorst Creek, and suggests that the 900-930 AD quake covered a greater geographic area than previous fault interpretations.

The revised height and width of deformation caused by the quake may influence current interpretations of the Seattle fault's structure. This study found a minimum of three meters of uplift at Gorst, which is double the amount of previous fault models for the same location. A broader zone of deformation, says Arcos, may indicate either a wider zone of slip along the dip of the fault, a shallower dip or splay faults farther to the south.

** "The A.D. 900 – 930 Seattle Fault Zone Earthquake with a Wider Coseismic Rupture Patch and Postseismic Submergence: Inferences from New Sedimentary Evidence," published in BSSA Vol 102:3; DOI number 10.1785/0120110123.

Author: Maria Elizabeth Martin Arcos is currently employed by AMEC and can be reached at beth.arcos@amec.com.

For copies of papers or the full Table of Contents for the issue, contact nan0604@msn.com

Nan Broadbent | EurekAlert!
Further information:
http://www.msn.com
http://www.seismosoc.org/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>