Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observation alone will change nothing

18.12.2012
Consequences of abandoning Alpine meadows
Agriculture is increasingly vanishing from the Alps. Land that was cultivated for centuries is now being abandoned and scrubs are encroaching on it. This affects not only the landscape, but also the water balance and will in future also have an impact on power generation. These are the conclusions reached by an interdisciplinary research group supported by the Swiss National Science Foundation (SNSF).

The Ursern Valley near Andermatt is in many ways a typical high mountain valley in the Alps. The first inhabitants arrived here around 800 years ago and turned patches of forest into open cultivated land where goats, sheep or cows were able to graze. The sustainable alpine farming that followed for hundreds of years is now on the decline. Sixty years ago there were still over 100 farms in the Ursern Valley; now there are only 30 left. Many of the less accessible pastures on the mountain slopes were abandoned and are now densely covered by alder shrubs.

Phenomenal expansion of green alders
In a large-scale Sinergia research project, plant ecologists, soil experts, hydrologists and economists coordinated by Erika Hiltbrunner and led by Christian Körner from the University of Basel have examined the consequences of farms being abandoned in the higher reaches of the Alpine range (*). In the Ursern Valley, it is mainly the green alder that is spreading like wildfire, 2.5 times as fast as the forest in the Swiss Alpine region. The area covered by the green alders has increased by one-fourth in the last ten years alone. This shrub, which is normally found in stream beds and avalanche paths, has now come to dominate the north-facing slopes. If this continues, the green alder will completely cover its potential habitat in the Ursern Valley by 2045.

In addition, the green alder is a plant that enters into a symbiosis with nitrogen-fixing bacteria in its roots. "The green alder is a nitrogen pump and over-fertilises the area that it covers," says Körner. Where it grows, the biodiversity of plant life decreases. Young conifers are not able to break through the dense undergrowth. "Without human intervention, the forest cannot make a rapid comeback," Körner explains.

A million francs lost
The spread of the green alder affects the quality of water because the shrub contaminates the water with nitrates. It also has an impact on water balance: surfaces covered by green alders or long, ungrazed grass release between ten and twenty percent more moisture into the air than grassland on which animals graze.
The amount of evaporated water cannot be gauged from the discharge of the Reuss River as the precipitation in the form of rain or snow over a given area cannot be measured accurately in the mountains. However, the steadily decreasing summer discharge during the past 40 years corresponds to the increasing rate of evapotranspiration. An extrapolation of the volume of evaporated water for the entire Ursern Valley suggests that power plants will in future lose between six and eleven gigawatt hours of energy corresponding to half a million and one million Swiss francs per year, depending on the weather.

Landscape preservation with Engadine sheep
"Green alder is invasive. The tactic of simply watching it spread has many downsides and is the worst option we can choose," Körner says. In their project, the researchers have tested another – more promising – option: they have led some Engadine sheep up on the affected pastures. "These sheep peel the bark off the green alders and the damaged shrubs subsequently die off because the transportation of sugar from the leaves to the root is blocked or because the root is killed off by parasitic fungi," Körner explains. More sheep of this old, robust breed would be an effective and simple measure to counteract the undesired scrub encroachment in the Alps. However, the economic analysis conducted by the researchers suggests that the added financial value of sustainable land use is not sufficient to keep the arable land open.

(*) Christian Körner, Erika Hiltbrunner, Christine Alewell, Rolf Weingartner, Frank Krysiak, (associated: Martin Schaffner). VALUrsern Final Report. (2012).
(available as a PDF document from the SNF; e-mail: com@snf.ch)

Sinergia
The Sinergia funding scheme of the SNSF supports small networks formed through the initiative and cooperation of research groups. It is a platform for interdisciplinary, multidisciplinary and unidisciplinary projects that allows researchers to develop synergetic approaches to complex scientific questions and advance into promising new research fields.

Contact
Prof. Christian Körner
Botanisches Institut
Universität Basel
Schönbeinstrasse 6
CH-4056 Basel
Tel.: +41 (0)61 267 35 09
E-mail: ch.koerner@unibas.ch

Communication division | idw
Further information:
http://www.snsf.ch/

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>