Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nullarbor Region Once Full of Fast-Flowing Rivers

25.01.2013
University of Adelaide geologists have shed new light on the origin of Australia’s largest delta, the Ceduna Delta, and the river systems which drained the continent millions of years before the Murray-Darling system came into existence.

It has long been thought that a massive river system, almost 2000km long, extended from Queensland’s eastern margin and entered the sea near Ceduna, depositing enormous quantities of sediment from across the continent.

In contrast, this research has revealed that between 85 and 70 million years ago the river system depositing sediment into the delta was restricted to a series of smaller, fast-flowing rivers in the area around Ceduna. This area was being uplifted as Australia and Antarctica began to break apart, forming a series of hills which were then eroded, producing a more subdued landscape that today encompasses the Nullarbor Plain.

The University of Adelaide researchers are the first to analyse the ages of mineral grains contained in sediments from the only well drilled to date into the centre of the delta in the Great Australian Bight – revealing the nature and original sources of the sediment.

"By analysing this sediment, we’ve been able to reconstruct the landscape and major river drainage systems of the Australian continent about 80 million years ago," said project leader Dr Simon Holford. "It also gives us a better understanding of the hydrocarbon potential – the possibility of economic oil and gas production – from the region.

"To understand the hydrocarbon potential, we need to know the origin and nature of the reservoir rocks."

The 700km-wide Ceduna Delta, off the West Coast of South Australia, is about the same size as the Niger Delta in Western Africa, containing about 0.5 million cubic kilometres of sedimentary rock including sandstones and shales.

Many deltas contain large hydrocarbon reserves, and last year BP announced it would invest up to $1.4 billion exploring the Ceduna Delta for oil and gas.

Analysing the sediment, Dr Holford, PhD candidate Justin MacDonald, fellow researchers and Melbourne-based Geotrack International Pty Ltd, dated almost 1000 grains of the mineral zircon from the well’s core samples.

"By looking at the distribution of the ages of the minerals, we were able to identify different 'age populations' of zircon and produce a model of a river system which transported these minerals and deposited them on the margin of the continent," Dr Holford said.

"Our results showed that most of the sediment was derived much closer to the Great Australian Bight than has been previously thought. It gives us a much better handle on the geology and geomorphology of Australia 85-70 million years ago."

The research has been published in the Journal of the Geological Society.

Dr Simon Holford
Lecturer in Petroleum Geoscience
Deputy Director, Centre for Tectonics, Resources and Exploration (TRaX)
The University of Adelaide
Phone: +61 8 8313 8035
Mobile: +61 424 197 916
simon.holford@adelaide.edu.au

Dr Simon Holford | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Earth Sciences:

nachricht New Link Between Ocean Microbes and Atmosphere Uncovered
22.05.2015 | University of California, San Diego

nachricht Scientists tackle mystery of thunderstorms that strike at night
21.05.2015 | National Center for Atmospheric Research/University Corporation for Atmospheric Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>