Nullarbor Region Once Full of Fast-Flowing Rivers

It has long been thought that a massive river system, almost 2000km long, extended from Queensland’s eastern margin and entered the sea near Ceduna, depositing enormous quantities of sediment from across the continent.

In contrast, this research has revealed that between 85 and 70 million years ago the river system depositing sediment into the delta was restricted to a series of smaller, fast-flowing rivers in the area around Ceduna. This area was being uplifted as Australia and Antarctica began to break apart, forming a series of hills which were then eroded, producing a more subdued landscape that today encompasses the Nullarbor Plain.

The University of Adelaide researchers are the first to analyse the ages of mineral grains contained in sediments from the only well drilled to date into the centre of the delta in the Great Australian Bight – revealing the nature and original sources of the sediment.

“By analysing this sediment, we’ve been able to reconstruct the landscape and major river drainage systems of the Australian continent about 80 million years ago,” said project leader Dr Simon Holford. “It also gives us a better understanding of the hydrocarbon potential – the possibility of economic oil and gas production – from the region.

“To understand the hydrocarbon potential, we need to know the origin and nature of the reservoir rocks.”

The 700km-wide Ceduna Delta, off the West Coast of South Australia, is about the same size as the Niger Delta in Western Africa, containing about 0.5 million cubic kilometres of sedimentary rock including sandstones and shales.

Many deltas contain large hydrocarbon reserves, and last year BP announced it would invest up to $1.4 billion exploring the Ceduna Delta for oil and gas.

Analysing the sediment, Dr Holford, PhD candidate Justin MacDonald, fellow researchers and Melbourne-based Geotrack International Pty Ltd, dated almost 1000 grains of the mineral zircon from the well’s core samples.

“By looking at the distribution of the ages of the minerals, we were able to identify different 'age populations' of zircon and produce a model of a river system which transported these minerals and deposited them on the margin of the continent,” Dr Holford said.

“Our results showed that most of the sediment was derived much closer to the Great Australian Bight than has been previously thought. It gives us a much better handle on the geology and geomorphology of Australia 85-70 million years ago.”

The research has been published in the Journal of the Geological Society.

Dr Simon Holford
Lecturer in Petroleum Geoscience
Deputy Director, Centre for Tectonics, Resources and Exploration (TRaX)
The University of Adelaide
Phone: +61 8 8313 8035
Mobile: +61 424 197 916
simon.holford@adelaide.edu.au

Media Contact

Dr Simon Holford Newswise

More Information:

http://www.adelaide.edu.au

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors