Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nullarbor Region Once Full of Fast-Flowing Rivers

25.01.2013
University of Adelaide geologists have shed new light on the origin of Australia’s largest delta, the Ceduna Delta, and the river systems which drained the continent millions of years before the Murray-Darling system came into existence.

It has long been thought that a massive river system, almost 2000km long, extended from Queensland’s eastern margin and entered the sea near Ceduna, depositing enormous quantities of sediment from across the continent.

In contrast, this research has revealed that between 85 and 70 million years ago the river system depositing sediment into the delta was restricted to a series of smaller, fast-flowing rivers in the area around Ceduna. This area was being uplifted as Australia and Antarctica began to break apart, forming a series of hills which were then eroded, producing a more subdued landscape that today encompasses the Nullarbor Plain.

The University of Adelaide researchers are the first to analyse the ages of mineral grains contained in sediments from the only well drilled to date into the centre of the delta in the Great Australian Bight – revealing the nature and original sources of the sediment.

"By analysing this sediment, we’ve been able to reconstruct the landscape and major river drainage systems of the Australian continent about 80 million years ago," said project leader Dr Simon Holford. "It also gives us a better understanding of the hydrocarbon potential – the possibility of economic oil and gas production – from the region.

"To understand the hydrocarbon potential, we need to know the origin and nature of the reservoir rocks."

The 700km-wide Ceduna Delta, off the West Coast of South Australia, is about the same size as the Niger Delta in Western Africa, containing about 0.5 million cubic kilometres of sedimentary rock including sandstones and shales.

Many deltas contain large hydrocarbon reserves, and last year BP announced it would invest up to $1.4 billion exploring the Ceduna Delta for oil and gas.

Analysing the sediment, Dr Holford, PhD candidate Justin MacDonald, fellow researchers and Melbourne-based Geotrack International Pty Ltd, dated almost 1000 grains of the mineral zircon from the well’s core samples.

"By looking at the distribution of the ages of the minerals, we were able to identify different 'age populations' of zircon and produce a model of a river system which transported these minerals and deposited them on the margin of the continent," Dr Holford said.

"Our results showed that most of the sediment was derived much closer to the Great Australian Bight than has been previously thought. It gives us a much better handle on the geology and geomorphology of Australia 85-70 million years ago."

The research has been published in the Journal of the Geological Society.

Dr Simon Holford
Lecturer in Petroleum Geoscience
Deputy Director, Centre for Tectonics, Resources and Exploration (TRaX)
The University of Adelaide
Phone: +61 8 8313 8035
Mobile: +61 424 197 916
simon.holford@adelaide.edu.au

Dr Simon Holford | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>