Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nullarbor fireball cameras find rare meteorite

22.09.2009
Using cameras which capture fireballs streaking across the night sky and sophisticated mathematics, a world-wide team of scientists have managed to find not only a tiny meteorite on the vast Nullarbor Plain, but also its orbit and the asteroid it came from.

The research team, including CSIRO scientist Dr Rob Hough, was led by Professor Phil Bland of Imperial College London.

The remarkable "detective" work was detailed in a paper published in Science on September 18, 2009.

Meteorites discovered with known orbits are incredibly rare, so the achievement is a remarkable breakthrough in planetary science.

The ability to track meteorites back to their asteroid home also means it is an incredibly cheap way of sampling that asteroid, rather than conducting an expensive space mission.

To find the meteorite, the team deployed three 'all sky cameras' on the Nullarbor Plain to form a fireball camera network.

The cameras take a single time lapse picture of the sky throughout the entire night to record any fireballs over the Plain.

Combined with some clever mathematics, researchers were then able to calculate the original orbit of the object and where to search for the meteorite on the ground.

CSIRO Exploration & Mining scientist and co-author of the paper Dr Rob Hough said the search for the meteorite was helped by the fact the Nullarbor Plain is marked by white limestone rocks.

"So a dark meteorite on the white surface is easier to find, however it's very tiny, so the discovery is still really quite amazing," Dr Hough said.

"This particular meteorite is also very interesting because of its rarity. It is an achondrite – a basalt - with a composition that suggest an asteroid from the inner asteroid belt."

Dr Hough said the 'all sky camera' network had been an extremely successful project and had spotted many fireballs.

"The Plain is a very difficult place to have technology like the cameras and the fieldwork to find the meteorite is not trivial," he said.

"The logistics are a really important aspect of a project like this and it takes a lot of planning to make it work."

The Science paper describes the first find of a meteorite from the camera network.

Western Australia Chief Scientist Professor Lyn Beazley described it as an extremely exciting finding, which will help us understand the evolution of the solar system.

"It will complement Western Australia's radio astronomy research and, in particular, Australia's commitment to the Square Kilometre Array radio telescope, " Professor Beazley said.

"This also represents an extraordinary collaborative effort between CSIRO, the Western Australian Museum and academics from the UK and takes advantage of the unique features of Western Australia, which allows the tracking, locating and collecting of rare meteorite material."

Bob Chamberlain | EurekAlert!
Further information:
http://www.csiro.au
http://www.scienceimage.csiro.au/mediarelease/mr09-165.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>