Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nullarbor fireball cameras find rare meteorite

22.09.2009
Using cameras which capture fireballs streaking across the night sky and sophisticated mathematics, a world-wide team of scientists have managed to find not only a tiny meteorite on the vast Nullarbor Plain, but also its orbit and the asteroid it came from.

The research team, including CSIRO scientist Dr Rob Hough, was led by Professor Phil Bland of Imperial College London.

The remarkable "detective" work was detailed in a paper published in Science on September 18, 2009.

Meteorites discovered with known orbits are incredibly rare, so the achievement is a remarkable breakthrough in planetary science.

The ability to track meteorites back to their asteroid home also means it is an incredibly cheap way of sampling that asteroid, rather than conducting an expensive space mission.

To find the meteorite, the team deployed three 'all sky cameras' on the Nullarbor Plain to form a fireball camera network.

The cameras take a single time lapse picture of the sky throughout the entire night to record any fireballs over the Plain.

Combined with some clever mathematics, researchers were then able to calculate the original orbit of the object and where to search for the meteorite on the ground.

CSIRO Exploration & Mining scientist and co-author of the paper Dr Rob Hough said the search for the meteorite was helped by the fact the Nullarbor Plain is marked by white limestone rocks.

"So a dark meteorite on the white surface is easier to find, however it's very tiny, so the discovery is still really quite amazing," Dr Hough said.

"This particular meteorite is also very interesting because of its rarity. It is an achondrite – a basalt - with a composition that suggest an asteroid from the inner asteroid belt."

Dr Hough said the 'all sky camera' network had been an extremely successful project and had spotted many fireballs.

"The Plain is a very difficult place to have technology like the cameras and the fieldwork to find the meteorite is not trivial," he said.

"The logistics are a really important aspect of a project like this and it takes a lot of planning to make it work."

The Science paper describes the first find of a meteorite from the camera network.

Western Australia Chief Scientist Professor Lyn Beazley described it as an extremely exciting finding, which will help us understand the evolution of the solar system.

"It will complement Western Australia's radio astronomy research and, in particular, Australia's commitment to the Square Kilometre Array radio telescope, " Professor Beazley said.

"This also represents an extraordinary collaborative effort between CSIRO, the Western Australian Museum and academics from the UK and takes advantage of the unique features of Western Australia, which allows the tracking, locating and collecting of rare meteorite material."

Bob Chamberlain | EurekAlert!
Further information:
http://www.csiro.au
http://www.scienceimage.csiro.au/mediarelease/mr09-165.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>