Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NSIDC, NASA Say Arctic Melt Season Lengthening, Ocean Rapidly Warming

01.04.2014

The length of the melt season for Arctic sea ice is growing by several days each decade, and an earlier start to the melt season is allowing the Arctic Ocean to absorb enough additional solar radiation in some places to melt as much as four feet of the Arctic ice cap’s thickness, according to a new study by National Snow and Ice Data Center (NSIDC) and NASA researchers.

Arctic sea ice has been in sharp decline during the last four decades. The sea ice cover is shrinking and thinning, making scientists think an ice-free Arctic Ocean during the summer might be reached this century. The seven lowest September sea ice extents in the satellite record have all occurred in the past seven years.


The length of the melt season for Arctic sea ice is growing by several days each decade, and an earlier start to the melt season is allowing the Arctic Ocean to absorb enough additional solar radiation in some places to melt as much as four feet of the Arctic ice cap’s thickness.

"The Arctic is warming and this is causing the melt season to last longer," said Julienne Stroeve, a senior scientist at NSIDC, Boulder and lead author of the new study, which has been accepted for publication in Geophysical Research Letters. "The lengthening of the melt season is allowing for more of the sun’s energy to get stored in the ocean and increase ice melt during the summer, overall weakening the sea ice cover."

To study the evolution of sea ice melt onset and freeze-up dates from 1979 to the present day, Stroeve’s team used passive microwave data from NASA’s Nimbus-7 Scanning Multichannel Microwave Radiometer, and the Special Sensor Microwave/Imager and the Special Sensor Microwave Imager and Sounder carried onboard Defense Meteorological Satellite Program spacecraft.

When ice and snow begin to melt, the presence of water causes spikes in the microwave radiation that the snow grains emit, which these sensors can detect. Once the melt season is in full force, the microwave emissivity of the ice and snow stabilizes, and it doesn’t change again until the onset of the freezing season causes another set of spikes. Scientists can measure the changes in the ice’s microwave emissivity using a formula developed by Thorsten Markus, co-author of the paper and chief of the Cryospheric Sciences Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Results show that although the melt season is lengthening at both ends, with an earlier melt onset in the spring and a later freeze-up in the fall, the predominant phenomenon extending the melting is the later start of the freeze season. Some areas, such as the Beaufort and Chukchi Seas, are freezing up between six and 11 days later per decade. But while melt onset variations are smaller, the timing of the beginning of the melt season has a larger impact on the amount of solar radiation absorbed by the ocean, because its timing coincides with when the sun is higher and brighter in the Arctic sky.

Despite large regional variations in the beginning and end of the melt season, the Arctic melt season has lengthened on average by five days per decade from 1979 to 2013.

Still, weather makes the timing of the autumn freeze-up vary a lot from year to year.

"There is a trend for later freeze-up, but we can’t tell whether a particular year is going to have an earlier or later freeze-up," Stroeve said. "There remains a lot of variability from year to year as to the exact timing of when the ice will reform, making it difficult for industry to plan when to stop operations in the Arctic."

To measure changes in the amount of solar energy absorbed by the ice and ocean, the researchers looked at the evolution of sea surface temperatures and studied monthly surface albedo data (the amount of solar energy reflected by the ice and the ocean) together with the incoming solar radiation for the months of May through October. The albedo and sea surface temperature data the researchers used comes from the National Oceanic and Atmospheric Administration’s polar-orbiting satellites.

They found that the ice pack and ocean waters are absorbing more and more sunlight due both to an earlier opening of the waters and a darkening of the sea ice. The sea ice cover is becoming less reflective because it now mostly consists of thinner, younger ice, which is less reflective than the older ice that previously dominated the ice pack. Also, the young ice is flatter, allowing the dark melt ponds that form at the early stages of the melt season are able to spread more widely, further lowering its albedo. 

The researchers calculated the increase in solar radiation absorbed by the ice and ocean for the period ranging from 2007 to 2011, which in some areas of the Arctic Ocean exceed 300 to 400 megajoules per square meter, or the amount of energy needed to thin the ice by an additional 3.1 to 4.2 feet (97 to 130 centimeters).

The increases in surface ocean temperatures, combined with a warming Arctic atmosphere due to climate change, explain the delayed freeze up in the fall.

"If air and ocean temperatures are similar, the ocean is not going to lose heat to the atmosphere as fast as it would when the differences are greater," said Linette Boisvert, co-author of the paper and a cryospheric scientist at Goddard. "In the last years, the upper ocean heat content is much higher than it used to be, so it’s going to take a longer time to cool off and for freeze up to begin." 

By Maria-José Viñas

NASA’s Earth Science News Team

Maria-Jose Vinas | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/nsidc-nasa-say-arctic-melt-season-lengthening-ocean-rapidly-warming/

Further reports about: Arctic Melt Microwave NASA NSIDC Ocean Warming decade measure temperatures variations

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>