Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NRL Researchers Observe Bright Arctic Clouds Formed by Exhaust from the Final Space Shuttle Launch

Naval Research Laboratory scientist Dr. Michael Stevens is leading an international consortium of scientists in tracking the rapid transport of the exhaust plume from the final launch of the space shuttle in July 2011. The team has found that the plume moved quickly to the Arctic, forming unusually bright polar mesospheric clouds (PMCs) there a day after launch.

The Cloud Imaging and Particle Size experiment on NASA's Aeronomy of Ice in the Mesosphere satellite observes PMCs about ten times brighter than usual over Scandanvia the day after launch of STS-135. Water vapor exhaust from the shuttle and other rockets may have led to significant PMC production of the past three decades, complicating the use of PMC occurrence as an indicator of upper atmospheric climate change.

The Cloud Imaging and Particle Size experiment on NASA's Aeronomy of Ice in the Mesosphere satellite observes PMCs about ten times brighter than usual over Scandanvia the day after launch of STS-135. Water vapor exhaust from the shuttle and other rockets may have led to significant PMC production of the past three decades, complicating the use of PMC occurrence as an indicator of upper atmospheric climate change.
(Image: U.S. Naval Research Laboratory)

Understanding the rapid transport of high altitude exhaust plumes near 105 km is providing new insight into the effects of winds at the bottom edge of the space weather regime towards improved forecasts of the co-located E-region of the ionosphere. This knowledge is critical for improving models of communication signal propagation and over-the-horizon-radar, explains Dr. Stevens, a Research Physicist in NRL's Space Science Division. Current theories suggest that the plumes are rapidly transported because of narrow, high-speed wind shears. These wind shears are also linked to the occurrence of so-called Sporadic E events, thus establishing a possible link between plume transport and the lower ionosphere.

During every launch, the space shuttle injects about 350 tons of water vapor from its three main engines off the east coast of the United States between 100 and 115 km altitude. Many studies have now shown that the poleward transport of this water vapor is much faster than global-scale models predict, and a few have furthermore shown that bursts of PMCs near 83 km altitude can result. These observations are forcing researchers to reexamine their understanding of global wind patterns in the lower thermosphere.

The long-term PMC record is also likely to be modified by increased space traffic, which is important because PMCs have been implicated as indicators of upper atmospheric climate change, explains Dr. Stevens. By assembling a suite of satellite and ground-based observations following the space shuttle's final launch, the NRL-led research team has revealed the nature of these shuttle clouds for the first time. The observations from both European and American collaborators show not only the rapid poleward transport of the plume and ensuing PMC formation, but that shuttle clouds are brighter than over 99% of all other PMCs and that the ice particles are larger at higher altitudes, which is the opposite of conventional models.

By allowing researchers to distinguish the shuttle PMCs from more typical clouds, these results will ultimately enable a search of the historical record to separate the anthropogenic PMCs from the natural PMCs.

The research results are reported in a paper in press that was posted on the website of the Journal of Geophysical Research or August 27, 2012.

About the U.S. Naval Research Laboratory

The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 85 years and continues to meet the complex technological challenges of today's world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

Donna McKinney | EurekAlert!
Further information:

Further reports about: Arctic Ocean Laboratory Launch Party NRL Observe PMC 40 PMCS Shuttle Space clouds space shuttle water vapor wind shear

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>