Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northern wildfires threaten runaway climate change, study reveals

06.12.2010
A new study discovers climate change is causing wildfires to burn more fiercely, pumping more greenhouse gases into the atmosphere than previously thought

Climate change is causing wildfires to burn more fiercely, pumping more greenhouse gases into the atmosphere than previously thought, according to a new study to be published in Nature Geosciences this week.

This is the first study to reveal that fires in the Alaskan interior - an area spanning 18.5 million hectares - have become more severe in the past 10 years, and have released much more carbon into the atmosphere than was stored by the region's forests over the same period.

"When most people think of wildfires, they think about trees burning, but most of what fuels a boreal fire is plant litter, moss and organic matter in surface soils," said University of Guelph professor Merritt Turetsky, lead author of the study.

"These findings are worrisome because about half the world's soil carbon is locked in northern permafrost and peatland soils. This is carbon that has accumulated in ecosystems a little bit at a time for thousands of years, but is being released very rapidly through increased burning."

The results of this study are important for countries currently meeting in Mexico for climate talks, added the integrative biology professor.

"Essentially this could represent a runaway climate change scenario in which warming is leading to larger and more intense fires, releasing more greenhouse gases and resulting in more warming. This cycle can be broken for a number of reasons, but likely not without dramatic changes to the boreal forest as we currently know it."

This study is part of a growing body of evidence that northern systems are bearing the brunt of climate change, said co-author Jennifer Harden, a U.S. Geological Survey scientist.

"This includes longer snow-free seasons, changes in vegetation, loss of ice and permafrost, and now fire, which is shifting these systems from a global carbon sink toward a carbon source."

The researchers visited almost 200 forest and peatland sites shortly after blazes were extinguished to measure how much biomass burnt.

"We've been chasing fires in this region for a number of years, which is how we amassed this unique data set," said Turetsky.

They also looked at fire records kept since the 1950s.

"Over the past 10 years, burned area has doubled in interior Alaska, mostly because of increased burning late in the fire season," said co-author Eric Kasischke, a University of Maryland professor. "This is the first study that has demonstrated that increases in burned area are clearly linked to increases in fire severity. This not only impacts carbon storage, but also will accelerate permafrost loss and changes in forest cover."

More severe burning also raises a number of health concerns, as fire emissions contain mercury and particulate matter that can cause respiratory issues, said Turetsky.

"We are hoping people will recognize the seriousness of climate change for northern regions and people living in them. Wildfire is going to play a more and more important role in shaping the north."

For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, or lhunt@uoguelph.ca, or Deirdre Healey, Ext. 56982 or dhealey@uoguelph.ca.

Lead author and contact:

Merritt Turetsky
University of Guelph, Ontario, Canada
mrt@uoguelph.ca
519-824-4120 ext 56166
Additional contacts:
Jennifer Harden
U.S. Geological Survey, California, U.S.
jharden@usgs.gov
650-329-4949
Eric Kasischke
University of Maryland, Maryland, U.S.
ekasisch@umd.edu
301-405-2179
Roger Ottmar
U.S. Forest Service, Pacific Northwest Research Station, Washington, U.S.
rottmar@fs.fed.us
206-732-7826
Participating Institutions:
University of Guelph
University of Maryland
U.S. Geological Survey
U.S. Forest Service, Pacific Northwest Research Station
Michigan Technological University

Deirdre Healey | EurekAlert!
Further information:
http://www.uoguelph.ca

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>