Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Has northern-hemisphere pollution affected Australian rainfall?

27.08.2009
A joint conference of the Global Energy and Water Cycle Experiment (GEWEX) and the Integrated Land Ecosystem-Atmosphere Processes Study (iLEAPS).
Main sponsors:
World Climate Research Programme
International Geosphere Biosphere Programme
Monash University
New research announced at the international Water in a changing climate science conference in Melbourne 24-28 August, implicates pollution from Asia, Europe and North America as a contributor to recent Australian rainfall changes. Australian scientists using a climate model that includes a treatment of tiny particles - or aerosols - report that the build up of these particles in the northern hemisphere affects their simulation of recent climate change in the southern hemisphere, including rainfall in Australia.

The CSIRO climate model, which can include the effects of aerosols caused by humans, suggests that aerosols - whose major sources are in the northern hemisphere - can drive changes in atmospheric and oceanic circulation in the southern hemisphere. Their model results suggest that human-generated aerosols from the northern hemisphere may have contributed to increased rainfall in north-western and central Australia, and decreased rainfall in parts of southern Australia.

Lead researcher, Dr Leon Rotstayn, Principal Research Scientist at the Centre for Australian Weather and Climate Research, a partnership between CSIRO and the Bureau of Meteorology, said: "Perhaps surprisingly, inclusion of northern hemisphere aerosols may be important for accurate modelling of Australian climate change."

Aerosols come from many different sources. Sulphur is released when we burn coal and oil. More dust, also an aerosol, circulates in the atmosphere when land is cleared, burned or overgrazed. Some aerosols occur naturally like sea spray and volcanic emissions, but NASA estimates ten percent of the total aerosols in the atmosphere are caused by people. Most of this ten percent is in the northern hemisphere.

European researchers also attending the conference will discuss a new forecasting service that will identify in unprecedented detail where these aerosols are coming from and where they are going.

The new service, part of Europe's Global Monitoring for Environment and Security (GMES) initiative, will give global information on how pollutants move around the world across oceans and continents, and will refine estimates of their sources and sinks.

Dr Adrian Simmons from the European Centre for Medium-Range Weather Forecasts, which is coordinating the multi-institution initiative, says: "The service will give much more detailed forecast information on air quality over Europe and provide the basis for better health advice across Europe and beyond". The service has clear implications for environmental policy and legislation.

The five-day conference, organised by the Global Energy and Water Cycle Experiment (GEWEX) and the Integrated Land Ecosystem-Atmosphere Processes Study (iLEAPS) and locally hosted by Monash University, brings together many of the world's leading experts to discuss the important processes that govern water availability and drought and their role in present and future climate and global change.

Professor Christian Jakob, who holds the Chair for Climate Modelling at Monash University and who chairs the local organising committee for the conference says: "It is fantastic to have attracted more than 350 researchers from more than 15 countries to come to Australia to discuss these very timely issues with us here in Melbourne."

"The exchanges of energy, carbon and water between the land, ocean and atmosphere are of utmost importance to current and future climate. The fundamental role of the land surface, clouds, aerosols and of course rainfall for climate has been highlighted many times in the reports of the Intergovernmental Panel on Climate Change (IPCC). This conference will advance our knowledge in all these important areas by bringing world-leading experts together for a week of discussions. It has been a great privilege for me and Monash University to host this event," he added.

The conference brings together the work of two major international research projects: GEWEX and iLEAPS. These projects complement each other and collaborate in a variety of global-change and climate-change research.

Owen Gaffney | EurekAlert!
Further information:
http://www.igbp.net
http://www.gewex.org/
http://www.igbp.kva.se

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>