Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

North and Tropical Atlantic Ocean Bringing Climate Change to Antarctica

23.01.2014
The gradual warming of the North and Tropical Atlantic Ocean is contributing to climate change in Antarctica, a team of New York University scientists has concluded.

The findings, which rely on more than three decades of atmospheric data and appear in the journal Nature, show new ways in which distant regional conditions are contributing to Antarctic climate change.


Photograph By: Jefferson Beck/NASA IceBridge, National Science Foundation

The gradual warming of the North and Tropical Atlantic Ocean is contributing to climate change in Antarctica, a team of NYU scientists has concluded. The findings, which rely on more than three decades of atmospheric data, show new ways in which distant regional conditions are contributing to Antarctic climate change. Below, several glaciers in the Antarctic Peninsula pass between sharp mountain peaks and converge in a single calving front, as seen by Operation IceBridge while returning from a survey of the Ronne Ice Shelf on Nov. 1, 2012. NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge.

“Our findings reveal a previously unknown—and surprising—force behind climate change that is occurring deep in our southern hemisphere: the Atlantic Ocean,” says Xichen Li, a doctoral student in NYU’s Courant Institute of Mathematical Sciences and the study’s lead author. “Moreover, the study offers further confirmation that warming in one region can have far-reaching effects in another.”

Over the past few decades, Antarctica has experienced dramatic climate change, with ist peninsula exhibiting the strongest warming of any region on the planet. During its summer, Antarctic changes have been attributed to greenhouse gas increase and stratospheric ozone loss. However, less clear are the forces behind climate changes that occur during its winter. In addition, the effects of these changes during the cold season are complex, further stifling efforts to find the atmospheric culprit.

It has long been known that the region’s climate is affected, in part, by changes in the distant Pacific Ocean climate. But the phenomena brought on by the Pacific have shorter-term influences—for instance, due to El Niño. Less understood are the longer-term forces that have produced warming along the Antarctic Peninsula or the sea-ice redistribution in the southern hemisphere’s winter over many decades.

To address this question, the NYU researchers focused on a different candidate: the Atlantic Ocean, which has been overlooked as a force behind Antarctic climate change.

Specifically, the scientists studied the North and Tropical Atlantic’s Sea Surface Temperature (SST) variability—changes in the ocean’s surface temperature—focusing on the last three decades. This metric, the Atlantic Multidecadal Oscillation (AMO), had previously not been considered in seeking explanations for Antarctic climate change.

Using a time-series analysis, in which the scientists matched changes in the North and Tropical Atlantic’s SST with subsequent changes in Antarctic climate, the researchers found strong correlations. Specifically, they observed that warming Atlantic waters were followed by changes in sea-level pressure in the Antarctic’s Amundsen Sea. In addition, these warming patterns also preceded redistribution of sea ice between the Antarctic’s Ross and Amundsen-Bellingshausen-Weddell Seas.

David Holland, co-author of the study, a professor at NYU's Courant Institute and past director of NYU's Center for Atmospheric Ocean Science, explained that the research consisted of two parts, which incorporated both the use of observational data and computer modeling.

The first part of the study, using the observational data, found a link, or correlation, between the Atlantic and Antarctic data sets. But a correlation means simply that two things appear to happen in conjunction and does not explain what may be causing a phenomenon.

The second used a global atmospheric model, which allowed the researchers to create a simulated warming of the North Atlantic. The model responded, as the researchers had suspected, by "changing" the climate in Antarctica.

"While our data analysis showed a correlation, it was the use of a state-of-the-art computer model that allowed us to see that North Atlantic warming was causing Antarctic climate change and not vice versa," he said.

The study’s findings raise a number of deeper questions, such as, is Antarctic sea-ice change fundamentally different from the well-reported changes in the Arctic? In contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not diminished. Rather, it has redistributed itself in ways that have perplexed scientists, with declines in some areas and increases in others.

Holland observes: “From this study, we are learning just how Antarctic sea-ice redistributes itself, and also finding that the underlying mechanisms controlling Antarctic sea ice are completely distinct from those in the Arctic.”

The study’s other authors included: Edwin Gerber, an assistant professor at the Courant Institute; and Changhyun Yoo, a Courant post-doctoral fellow.

The research was supported by grants from the National Science Foundation’s Polar Programs (ANT-297 0732869) and Atmospheric and Geospace Sciences (AGS-1264195) divisions, NASA’s Polar Programs (NNX12AB69G), and the NYU Abu Dhabi Research Institute (G1204).

James Devitt | Newswise
Further information:
http://www.nyu.edu

More articles from Earth Sciences:

nachricht Climate engineering may save coral reefs, study shows
26.05.2015 | University of Exeter

nachricht New Link Between Ocean Microbes and Atmosphere Uncovered
22.05.2015 | University of California, San Diego

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Analytical lamps monitor air pollution in cities

26.05.2015 | Ecology, The Environment and Conservation

DNA double helix does double duty in assembling arrays of nanoparticles

26.05.2015 | Life Sciences

Turn That Defect Upside Down

26.05.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>