Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

North and Tropical Atlantic Ocean Bringing Climate Change to Antarctica

23.01.2014
The gradual warming of the North and Tropical Atlantic Ocean is contributing to climate change in Antarctica, a team of New York University scientists has concluded.

The findings, which rely on more than three decades of atmospheric data and appear in the journal Nature, show new ways in which distant regional conditions are contributing to Antarctic climate change.


Photograph By: Jefferson Beck/NASA IceBridge, National Science Foundation

The gradual warming of the North and Tropical Atlantic Ocean is contributing to climate change in Antarctica, a team of NYU scientists has concluded. The findings, which rely on more than three decades of atmospheric data, show new ways in which distant regional conditions are contributing to Antarctic climate change. Below, several glaciers in the Antarctic Peninsula pass between sharp mountain peaks and converge in a single calving front, as seen by Operation IceBridge while returning from a survey of the Ronne Ice Shelf on Nov. 1, 2012. NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge.

“Our findings reveal a previously unknown—and surprising—force behind climate change that is occurring deep in our southern hemisphere: the Atlantic Ocean,” says Xichen Li, a doctoral student in NYU’s Courant Institute of Mathematical Sciences and the study’s lead author. “Moreover, the study offers further confirmation that warming in one region can have far-reaching effects in another.”

Over the past few decades, Antarctica has experienced dramatic climate change, with ist peninsula exhibiting the strongest warming of any region on the planet. During its summer, Antarctic changes have been attributed to greenhouse gas increase and stratospheric ozone loss. However, less clear are the forces behind climate changes that occur during its winter. In addition, the effects of these changes during the cold season are complex, further stifling efforts to find the atmospheric culprit.

It has long been known that the region’s climate is affected, in part, by changes in the distant Pacific Ocean climate. But the phenomena brought on by the Pacific have shorter-term influences—for instance, due to El Niño. Less understood are the longer-term forces that have produced warming along the Antarctic Peninsula or the sea-ice redistribution in the southern hemisphere’s winter over many decades.

To address this question, the NYU researchers focused on a different candidate: the Atlantic Ocean, which has been overlooked as a force behind Antarctic climate change.

Specifically, the scientists studied the North and Tropical Atlantic’s Sea Surface Temperature (SST) variability—changes in the ocean’s surface temperature—focusing on the last three decades. This metric, the Atlantic Multidecadal Oscillation (AMO), had previously not been considered in seeking explanations for Antarctic climate change.

Using a time-series analysis, in which the scientists matched changes in the North and Tropical Atlantic’s SST with subsequent changes in Antarctic climate, the researchers found strong correlations. Specifically, they observed that warming Atlantic waters were followed by changes in sea-level pressure in the Antarctic’s Amundsen Sea. In addition, these warming patterns also preceded redistribution of sea ice between the Antarctic’s Ross and Amundsen-Bellingshausen-Weddell Seas.

David Holland, co-author of the study, a professor at NYU's Courant Institute and past director of NYU's Center for Atmospheric Ocean Science, explained that the research consisted of two parts, which incorporated both the use of observational data and computer modeling.

The first part of the study, using the observational data, found a link, or correlation, between the Atlantic and Antarctic data sets. But a correlation means simply that two things appear to happen in conjunction and does not explain what may be causing a phenomenon.

The second used a global atmospheric model, which allowed the researchers to create a simulated warming of the North Atlantic. The model responded, as the researchers had suspected, by "changing" the climate in Antarctica.

"While our data analysis showed a correlation, it was the use of a state-of-the-art computer model that allowed us to see that North Atlantic warming was causing Antarctic climate change and not vice versa," he said.

The study’s findings raise a number of deeper questions, such as, is Antarctic sea-ice change fundamentally different from the well-reported changes in the Arctic? In contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not diminished. Rather, it has redistributed itself in ways that have perplexed scientists, with declines in some areas and increases in others.

Holland observes: “From this study, we are learning just how Antarctic sea-ice redistributes itself, and also finding that the underlying mechanisms controlling Antarctic sea ice are completely distinct from those in the Arctic.”

The study’s other authors included: Edwin Gerber, an assistant professor at the Courant Institute; and Changhyun Yoo, a Courant post-doctoral fellow.

The research was supported by grants from the National Science Foundation’s Polar Programs (ANT-297 0732869) and Atmospheric and Geospace Sciences (AGS-1264195) divisions, NASA’s Polar Programs (NNX12AB69G), and the NYU Abu Dhabi Research Institute (G1204).

James Devitt | Newswise
Further information:
http://www.nyu.edu

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>