Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

North-East Passage soon free from ice again?

13.06.2012
Winter measurements show thin sea ice in the Laptev Sea, pointing to early and large scale summer melt

The North-East Passage, the sea route along the North coast of Russia, is expected to be free of ice early again this summer. The forecast was made by sea ice physicists of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association based on a series of measurement flights over the Laptev Sea, a marginal sea of the Arctic Ocean.

Amongs experts the shelf sea is known as an “ice factory” of Arctic sea ice. At the end of last winter the researchers discovered large areas of thin ice not being thick enough to withstand the summer melt.

"These results were a great surprise to us“, says expedition member Dr. Thomas Krumpen. In previous measurements in the winter of 2007/2008 the ice in the same area had been up to one metre thicker.

In his opinion these clear differences are primarily attributable to the wind: “It behaves differently from year to year. If, as last winter, the wind blows from the mainland to the sea, it pushes the pack ice from the Laptev Sea towards the North. Open water areas, so-called polynyas, develop in this way before the coast. Their surface water naturally cools very quickly at an air temperature of minus 40 degrees. New thin ice forms and is then immediately swept away again by the wind. In view of this cycle, differently sized areas of thin ice then develop on the Laptev Sea depending on wind strength and continuity“, explains Thomas Krumpen.

However, the expedition team was unaware of just how large these areas can actually become until they made the measurement flights in March and April of this year. In places the researchers flew over thin ice for around 400 kilometres. The “EM Bird”, the torpedo-shaped, electromagnetic ice thickness sensor of the Alfred Wegener Institute, was hung on a cable beneath the helicopter. It constantly recorded the thickness of the floating ice. “We now have a unique data set which we primarily want to use to check the measurements of the earth investigation satellite SMOS“, says Thomas Krumpen.

The abbreviation SMOS (Soil Moisture and Ocean Salinity) is actually a satellite mission to determine the soil moisture of the mainland and salinity of the oceans. However, the satellite of the European Space Agency (ESA) can also be used to survey the Arctic sea ice. “The satellite can be used above all to detect thin ice areas, as we have seen them, from space“, explains Thomas Krumpen.

The SMOS satellite measurements from March and April of this year confirm that the thin ice areas discovered by the expedition team were no locally restricted phenomenon: “A large part of the North-East Passage was characterised by surprisingly thin ice at the end of the winter“, says Thomas Krumpen.

The new findings of the successful winter expedition give cause for concern to the scientists: “These huge new areas of thin ice will be the first to disappear when the ice melts in summer. And if the thin ice melts as quickly as we presume, the Laptev Sea and with it a part of the North-East Passage will be free from ice comparatively early this summer“, explains the sea ice physicist.

In the past the Laptev Sea was always covered with sea ice from October to the end of the following July and was navigable for a maximum of two summer months. In 2011 the ice had retracted so far by the third week of July that during the course of the summer 33 ships were able to navigate the Arctic waters of Russia for the first time. The North-East Passage is viewed by shipping companies to be a time and fuel saving alternative to the conventional Europe-Asia route. The connection from Rotterdam to Japanese Yokohama via the Nord-East Passage is some 3800 sea miles shorter than taking the Suez Canal and Indian Ocean route.

Notes for Editors: Printable images and maps as well as info charts on the formation of sea ice in the Laptev Sea are available in the online version of this press release at http://www.awi.de/en/news/press_releases/.

Your contact partners in the Alfred Wegener Institute are sea ice physicist Dr. Thomas Krumpen (phone: +49 (0)471 4831-1753; e-mail: Thomas.Krumpen@awi.de) and Sina Löschke in the Communications and Media Department of the Alfred Wegener Institute (phone: +49 (0)471 4831-2008; e-mail: Sina.Loeschke@awi.de).

General information on the SMOS satellites may be found on the ESA website at http://www.esa.int/esaCP/SEMB4L4AD1G_Germany_0.html and on the sea ice thickness measurements of the satellite at http://www.esa.int/esaLP/SEM361BX9WG_index_0.html.

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>