Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA-Supported Scientists Predict “Larger Than Average” Gulf Dead Zone

01.07.2010
The northern Gulf of Mexico hypoxic zone, an underwater area with little or no oxygen known commonly as the “dead zone,” could be larger than the recent average, according to a forecast by a team of NOAA-supported scientists from the Louisiana Universities Marine Consortium, Louisiana State University, and the University of Michigan.

Scientists are predicting the area could measure between 6,500 and 7,800 square miles, or an area roughly the size of the state of New Jersey. The average of the past five years is approximately 6,000 square miles. It is the goal of a federal state task force to reduce it to 1,900 square miles. The largest dead zone on record, 8,484 square miles, occurred in 2002.

This forecast is based on Mississippi River nutrient flows compiled annually by the U.S. Geological Survey. Dead zones off the coast of Louisiana and Texas are caused by nutrient runoff, principally from agricultural activity, which stimulates an overgrowth of algae that sinks, decomposes, and consumes most of the life-giving oxygen supply in the water. It is unclear what impact, if any, the BP Deepwater Horizon oil spill will have on the size of the dead zone.

“The oil spill could enhance the size of the hypoxic zone through the microbial breakdown of oil, which consumes oxygen, but the oil could also limit the growth of the hypoxia-fueling algae,” said R. Eugene Turner, Ph.D., professor of oceanography at Louisiana State University. “It is clear, however, that the combination of the hypoxic zone and the oil spill is not good for local fisheries.”

Hypoxia is of particular concern because it threatens valuable commercial and recreational Gulf fisheries. In 2008, the dockside value of commercial fisheries was $659 million. The 24 million fishing trips taken in 2008 by more than three million recreational fishers further contributed well over a billion dollars to the Gulf economy.

“As with weather forecasts, this prediction uses multiple models to predict the range of the expected size of the dead zone,” said Robert Magnien, Ph.D., director of NOAA’s Center for Sponsored Coastal Ocean Research. “The strong track record of these models reinforces our confidence in the link between excess nutrients from the Mississippi River and the dead zone.”

“The 2010 spring nutrient load transported to the northern Gulf of Mexico is about 11 percent less than the average over the last 30 years,” said Matthew Larsen, Ph.D., USGS associate director for water. “An estimated 118,000 metric tons of nitrogen in the form of nitrate were transported in May 2010 to the northern Gulf.”

The collaboration among NOAA, USGS, and University scientists facilitates understanding of the linkages between activities in the Mississippi River watershed and the downstream effects on the northern Gulf of Mexico. Long-term data sets on nutrient loads and the extent of the hypoxic zone have improved forecast models used by management agencies to understand the nutrient reductions required to reduce the size of the hypoxic zone to the established goal. This year’s forecast is an example of NOAA’s growing ecological forecasting capabilities that allow for the protection of valuable resources using scientific, ecosystem-based approaches.

An announcement of the size of the 2010 hypoxic zone, which is an annual requirement of the Gulf of Mexico Hypoxia Task Force Action Plan, will follow a NOAA-supported monitoring survey led by the Louisiana Universities Marine Consortium between July 24 and August 2. Information on the extent of hypoxia will also be available on the NOAA’s Gulf of Mexico Hypoxia Watch Web page, which displays near real-time results of the NOAA Fisheries Service summer fish survey in the northern Gulf of Mexico currently underway and scheduled to be completed by July 18.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Visit us on Facebook.

Ben Sherman | EurekAlert!
Further information:
http://www.noaa.gov

Further reports about: Gulf of Maine region Hypoxia Marine science Mississippi NOAA River USGS dead zone oil spill

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>