Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA researchers release study on emissions from BP/Deepwater Horizon controlled burns

21.09.2011
During the 2010 BP/Deepwater Horizon Gulf oil spill, an estimated one of every 20 barrels of spilled oil was deliberately burned off to reduce the size of surface oil slicks and minimize impacts of oil on sensitive shoreline ecosystems and marine life.

In response to the spill, NOAA quickly redirected its WP-3D research aircraft to survey the atmosphere above the spill site in June. During a flight through one of the black plumes, scientists used sophisticated instrumentation on board, including NOAA's single-particle soot photometer, to characterize individual black carbon particles.


Black smoke billows from a controlled burn of surface oil during the 2010 Deepwater Horizon oil spill. A new study by NOAA and the Cooperative Institute for Research in Environmental Sciences (CIRES) found that controlled burns released more than one million pounds of sooty black carbon into the atmosphere. (Credit: U.S. Coast Guard photo)

The black smoke that rose from the water’s surface during the controlled burns pumped more than 1 million pounds of black carbon (soot) pollution into the atmosphere, according to a new study published last week by researchers at NOAA and its Cooperative Institute for Research in Environmental Sciences (CIRES) in Boulder, Colo.

This amount is roughly equal to the total black carbon emissions normally released by all ships that travel the Gulf of Mexico during a 9-week period, scientists noted.

Black carbon, whose primary component is often called soot, is known to degrade air quality and contribute to warming of the Earth’s atmosphere. The new study, published online this week in Geophysical Research Letters, provides some of the most detailed observations made of black carbon sent airborne by burning surface oil.

“Scientists have wanted to know more about how much black carbon pollution comes from controlled burning and the physical and chemical properties of that pollution. Now we know a lot more,” said lead author Anne Perring, a scientist with CIRES and the Chemical Sciences Division of NOAA’s Earth System Research Laboratory (ESRL) in Boulder, Colo.

Black carbon is the most light-absorbing airborne particle in the atmosphere and the reason for the black color in the smoky plumes that rise from the surface oil fires. Black carbon can also cause warming of the atmosphere by absorbing light. Prolonged exposure to breathing black carbon particles from human and natural burning sources is known to cause human health effects.

During the 9 weeks active surface oil burning, a total of 1.4 to 4.6 million pounds (0.63 to 2.07 million kilograms) of black carbon was sent into the atmosphere of the Gulf of Mexico, the study estimated.

The study found that the hot soot plumes from the controlled burns reached much higher into the atmosphere than ship emissions normally rise, potentially prolonging the amount of time the black carbon can remain in the atmosphere, which would affect where the black carbon ends up.

The researchers also found that the average size of the black carbon particles was much larger than that emitted from other sources in the Gulf region, and that the emitted particles produced were almost all black carbon, unlike other sources such as forest fires that tend to produce other particles along with black carbon.

“The size and makeup of the black carbon particles determine how fast the particles are removed from the atmosphere by various processes, which ultimately affects their impact on climate,” says Perring. Larger particles are removed from the atmosphere more quickly and thus have smaller climate impacts. And, those same properties of black carbon are important for assessing human health impacts.

Finally, Perring and her colleagues found that of the oil that was burned, 4 percent of the mass was released as black carbon, an important metric rarely observed during cleanup of an oceanic oil spill, which could help guide future decision-making.

The new paper, Characteristics of Black Carbon Aerosol from a Surface Oil Burn During the Deepwater Horizon Oil Spill, has 15 co-authors from NOAA ESRL and CIRES and can be found on the Geophysical Research Letters website.

As part of its response to the Deepwater Horizon oil spill, the unified federal response team used controlled burns to remove oil from the open water in an effort to minimize impacts to the shoreline and marine and other wildlife. For more information about the federal response to the Deepwater Horizon oil spill and ongoing restoration efforts in the Gulf of Mexico, visit RestoreTheGulf.gov.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter and our other social media channels.

Katy Human | EurekAlert!
Further information:
http://www.noaa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>