Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NOAA-led Research Team Takes Measure of the Variability of the Atmosphere’s Self-Cleaning Capacity

An international, NOAA-led research team took a significant step forward in understanding the atmosphere’s ability to cleanse itself of air pollutants and some other gases, except carbon dioxide.

The issue has been controversial for many years, with some studies suggesting the self-cleaning power of the atmosphere is fragile and sensitive to environmental changes, while others suggest greater stability. And what researchers are finding is that the atmosphere’s self-cleaning capacity is rather stable.

Aidan Colton at NOAA\'s Mauna Loa Observatory (MLO) demonstrates how early flask samples were filled at the site. Air collected year-round at MLO and eight other remote sites
around the world has been analyzed for the industrial solvent methyl chloroform. Variability in the decay of this chemical has helped scientists understand the oxidizing or cleansing power of the global atmosphere and its sensitivity to natural and human-induced perturbations. (Credit: NOAA)

New analysis published online today in the journal Science shows that global levels of the hydroxyl radical, a critical player in atmospheric chemistry, do not vary much from year to year. Levels of hydroxyl, which help clear the atmosphere of many hazardous air pollutants and some important greenhouse gases — but not carbon dioxide — dip and rise by only a few percent every year; not by up to 25 percent, as was once estimated.

“The new hydroxyl measurements give researchers a broad view of the ‘oxidizing’ or self-cleaning capacity of the atmosphere,” said Stephen Montzka, the study’s lead author and a research chemist at the Global Monitoring Division of NOAA’s Boulder, Colo., laboratory.

“Now we know that the atmosphere’s ability to rid itself of many pollutants is generally well buffered or stable,” said Montzka. “This fundamental property of the atmosphere was one we hadn’t been able to confirm before.”

The new finding adds confidence to projections of future air pollutant loads. The hydroxyl radical, comprised of one oxygen atom and one hydrogen atom, is formed and broken down so quickly in the atmosphere that it has been extremely difficult to measure on global scales.

“In the daytime, hydroxyl’s lifetime is about one second and is present at exceedingly low concentrations,” said Montzka. “Once created, it doesn’t take long to find something to react with.”

The radical is central to the chemistry of the atmosphere. It is involved in the formation and breakdown of surface-level ozone, a lung- and crop-damaging pollutant. It also reacts with and destroys the powerful greenhouse gas methane and air pollutants including hydrocarbons, carbon monoxide and sulfur dioxide. However, hydroxyl radicals do not remove carbon dioxide, nitrous oxide or chlorofluorocarbons.

To estimate variability in global hydroxyl levels — and thus the cleansing capacity of the atmosphere — researchers turned to studying longer-lived chemicals that react with hydroxyl.

The industrial chemical methyl chloroform, for example, is destroyed in the atmosphere primarily by hydroxyl radicals. By comparing levels of methyl chloroform emitted into the atmosphere with levels measured in the atmosphere, researchers can estimate the concentration of hydroxyl and how it varies from year to year.

This technique produced estimates of hydroxyl that swung wildly in the 1980s and 1990s. Researchers struggled to understand whether the ups and downs were due to errors in emissions estimates for methyl chloroform, for example, or to real swings in hydroxyl levels. The swings would be of concern: Large fluctuations in hydroxyl radicals would mean the atmosphere’s self-cleaning ability was very sensitive to human-caused or natural changes in the atmosphere.

To complicate matters, when scientists tried to measure the concentration of hydroxyl radical levels compared to other gases, such as methane, they were seeing only small variations from year to year. The same small fluctuation was occurring when scientists ran the standard global chemistry models.

An international agreement helped resolve the issue. In response to the Montreal Protocol – the international agreement to phase out chemicals that are destroying the Earth’s protective stratospheric ozone layer – production of methyl chloroform all but stopped in the mid 1990s. As a result, emissions of this potent ozone-depleting gas dropped precipitously.

Without the confounding effect of any appreciable methyl chloroform emissions, a more precise picture of hydroxyl variability emerged based on the observed decay of remaining methyl chloroform. The scientists studied hydroxyl radicals both by making measurements of methyl chloroform from NOAA’s international cooperative air sampling program and also by modeling results with state-of-the-art models.

The group’s findings improve confidence in projecting the future of Earth’s atmosphere.

“Say we wanted to know how much we’d need to reduce human-derived emissions of methane to cut its climate influence by half,” Montzka said. “That would require an understanding of hydroxyl and its variability. Since the new results suggest that large hydroxyl radical changes are unlikely, such projections become more reliable.”

Co-authors of the new paper, “Small Inter-Annual Variability of Global Atmospheric Hydroxyl,” include Maarten Krol (University of Utrecht and Wageningen University in the Netherlands); Ed Dlugokencky and Bradley Hall (NOAA Earth System Research Laboratory); Patrick Jöckel (Max-Planck-Institute for Chemistry in Mainz, Germany, and the Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany); and Jos Lelieveld (Max-Planck and the Cyprus Institute in Nicosia, Cyprus).

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Find us online and on Facebook.

Jana Goldman | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>