Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA-Funded Tagging of Narwhals Finds Continued Warming of Southern Baffin Bay

28.10.2010
Proof-of-Concept Study Published in Journal of Geophysical Research-Oceans

In a research paper published online Saturday in the Journal of Geophysical Research Oceans, a publication of the American Geological Union (AGU), scientists reported the southern Baffin Bay off West Greenland has continued warming since wintertime ocean temperatures were last effectively measured there in the early 2000s.

Temperatures in the study were collected by narwhals, medium-sized toothed Arctic whales, during NOAA-sponsored missions in 2006 and 2007. The animals were tagged with sensors that recorded ocean depths and temperatures during feeding dives from the surface pack ice to the seafloor, going as deep as 1,773 meters, or more than a mile.

Scientists have had limited opportunities to measure ocean temperatures in Baffin Bay during winter months because of dense ice and harsh conditions. Cost is also a factor — it requires millions of dollars to mount a conventional expedition using an ice-breaking vessel and other specialized equipment and people. As a result, for the past decade, researchers used climatology data consisting of long-term historical average observations rather than direct ocean temperature measurements for winter temperatures in the area.

The published study reported that highest winter ocean temperature measurements in 2006 and 2007 from both narwhals and additional sensors deployed using helicopters ranged between 4 and 4.6 degrees Celsius (39.2 and 40.3 degrees Fahrenheit). The study also found that temperatures were on average nearly a degree Celsius warmer than climatology data. Whale-collected temperatures also demonstrated the thickness of the winter surface isothermal layer, a layer of constant temperature, to be 50 to 80 meters less than that reported in the climatology data.

“Narwhals proved to be highly efficient and cost-effective ‘biological oceanographers,’ providing wintertime data to fill gaps in our understanding of this important ocean area,” said Kristin Laidre from the Polar Science Center in the University of Washington’s Applied Physics Laboratory. “Their natural behavior makes them ideal for obtaining ocean temperatures during repetitive deep vertical dives. This mission was a ‘proof-of-concept’ that narwhal-obtained data can be used to make large-scale hydrographic surveys in Baffin Bay and to extend the coverage of a historical database into the poorly sampled winter season.”

Greenland’s coast is a gateway for fresh water from melting polar ice flowing south to the Labrador Shelf, ultimately reaching the North Atlantic Current. The Arctic flow’s effect on the current is critical for understanding the impacts of a changing Arctic on the transference of heat globally from the equator to higher latitudes.

Laidre was lead scientist on the NOAA-sponsored missions and is lead author of the paper. “Continued warming will likely have pronounced effects on the species and ecosystem in Baffin Bay and may eventually affect sea ice coverage in the region, which in recent years has already retreated significantly,” she said. “The timing of the break-up of spring sea ice is ecologically important for many marine species and is linked to primary production that forms the base of the food chain.”

NOAA’s Office of Ocean Exploration and Research funded the missions in 2006 and 2007 to tag and track narwhals as they made a fall migration from northwest Greenland to their wintering grounds in Baffin Bay. During that time and in an earlier mission, 14 adult narwhals were tagged with sensors to record date and time, ocean temperature and depth information. The data were automatically sent to a satellite when the narwhals surfaced for air between cracks in the sea ice. Tagging was carried out in accordance with the University of Washington’s Animal Care Guidelines and a permit issued by the Government of Greenland. Each sensor tag provided up to seven months of data before falling off the animal.

Laidre worked in Baffin Bay with colleagues and co-authors Mads Peter Heide-Jørgensen from the Greenland Institute of Natural Resources in Nuuk, Greenland, and Wendy Ermold and Michael Steele also from the Polar Science Center, University of Washington.

The NOAA-sponsored narwhal missions are chronicled online and include lesson plans at three grade levels that align with National Science Education Standards.

Celebrating 10 years of ocean exploration, NOAA's Office of Ocean Exploration and Research uses state-of-the-art technologies to explore the Earth's largely unknown ocean in all its dimensions for the purpose of discovery and the advancement of knowledge.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Visit us on Facebook at http://www.facebook.com/usnoaagov.

Keeley Belva | EurekAlert!
Further information:
http://www.noaa.gov
http://www.noaanews.noaa.gov/stories2010/20101027_narwhal.html

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>