Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No gold without microbes

08.04.2015

Many people love jewelry and other items made of gold. They have inconspicuous microbes to thank for this: Three billion years ago they held the noble metal in the Earth’s crust. This is the opinion at least of an expert from the University of Würzburg.

All the Earth’s gold deposits should actually be in the Earth’s core – buried deep out of mankind’s reach. After all, this metal has such a high density that in the course of the creation of the Earth it ought to have been moved to there. But in actual fact it also accumulated in the Earth’s crust.


Carbonaceous layer of sediment rocks, essentially consisting of kerogen, Witwatersrand basin, South Africa: an extremely rarely well preserved remnant of mats of microbes performing photosynthesis.

(Photo: Hartwig Frimmel)

Why did the gold stay there? “To this day this remains one of the most hotly debated issues in geology and geochemistry,” says Professor Hartwig Frimmel, chairman of the Department of Geodynamics and Geomaterials Research at the University of Würzburg. He is now adding a new theory to the debate, which suggests that prehistoric microbes are responsible for binding gold to the Earth’s crust.

Frimmel presents his idea in detail in the journal “Mineralium Deposita”. The Würzburg scientist is regarded as the world’s leading expert in gold deposits. He spent a long time as a professor at the University of Cape Town conducting research in South Africa’s Witwatersrand region, among others. This is where the world’s largest concentration of gold in the Earth’s crust can be found.

Where there is a lot of gold, there are also the remains of bacteria

What do microbes have to do with gold? “Wherever there are large quantities of gold, there are also layers of stratified carbonaceous substances that are of biological origin,” says Frimmel. “We have found evidence to suggest that these are the remains of cyanobacteria.” These original microbes inhabited the coastal regions of the Earth three billion years ago.

The cyanobacteria were the first living organisms that performed photosynthesis and first created “whiffs of oxygen”, as Frimmel says. The Earth at that time was still largely hostile to life: Rain had roughly the acidity of vinegar, and the surface water was rich in hydrogen sulfide.

Where there was oxygen, gold was bound

“But under precisely these conditions gold becomes extremely soluble in water,” explains the professor. The rivers and other bodies of water must have been very rich in gold back then. Where this water came upon colonies of cyanobacteria arranged into mats, the gold was chemically adhered to the surface of the microbes immediately by the oxygen.

So, three billion years ago a kind of “Gold Mega Event” occurred: “The chemical conditions at that time were perfect for binding gold and enabling the formation of deposits,” believes Frimmel. Over time and in this manner, for example, the huge gold deposits were created that can be found in such places as the Witwatersrand region of South Africa. At one time 100,000 tons of the treasured metal were stored there. More than half of it has already been mined.

“First whiffs of atmospheric oxygen triggered onset of crustal gold cycle”, Hartwig E. Frimmel, Quinton Hennigh, Mineralium Deposita (2015), DOI: 10.1007/s00126-014-0574-8

Contact

Prof. Dr. Hartwig Frimmel, Department of Geodynamics and Geomaterials Research, T +49 (0)931 31-85420, hartwig.frimmel@uni-wuerzburg.de

Weitere Informationen:

http://www.geodynamik.geographie.uni-wuerzburg.de/geodynamik_und_geomaterialfors... Prof. Frimmel's research

Robert Emmerich | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>