Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST 'combs' the atmosphere to measure greenhouse gases

30.10.2014

By remotely "combing" the atmosphere with a custom laser-based instrument, researchers from the National Institute of Standards and Technology (NIST), in collaboration with researchers from the National Oceanic and Atmospheric Administration (NOAA), have developed a new technique that can accurately measure—over a sizeable distance—amounts of several of the major "greenhouse" gases implicated in climate change.

The technique potentially could be used in several ways to support research on atmospheric greenhouse gases. It can provide accurate data to support ongoing and future satellite monitoring of the composition of the atmosphere. With development, more portable systems based on the technology could provide very accurate, continuous regional monitoring of these gases over kilometer scales—a capability lacking with current monitoring techniques.


Photo illustration of NIST experiment using a pair of laser frequency combs (depicted as rainbow-colored cartoons) to detect the simultaneous signatures of several 'greenhouse' gases along a 2-kilometer path between a NIST laboratory roof and a nearby mesa. Each comb 'tooth' represents a different frequency of light. To identify gases in the atmosphere, researchers measured the amount of comb light absorbed at different frequencies along the path.

Credit: Burrus and Irvine/NIST

In the recent demonstration,* NIST's pair of laser frequency combs measured the simultaneous signatures of several greenhouse gases—including carbon dioxide, methane and water vapor—along a 2-kilometer path between a NIST laboratory roof in Boulder, Colo., and a nearby mesa.

Frequency combs are laser-generated tools made up of a large number of very precisely defined frequencies that are evenly spaced, like the teeth on a pocket comb. Each comb "tooth" represents an individual color, or frequency, enabling very accurate measurements of the characteristic absorption signatures of different gas molecules of interest.

Researchers identified gases in the atmosphere by measuring the amount of comb light absorbed at different frequencies during its trip from the NIST lab roof to a mirror on the mesa and back to a detector in a lab. Because the optical frequencies are too high to be measured directly, the researchers borrowed a trick from early radio. They created two combs with slightly different spacing between the teeth. Mixing light from these dual frequency combs together creates a "beat" frequency shifted down to the radio band, low enough to be measured. This was the first demonstration of the technique over long distances outdoors.

Remote sensing of atmospheric gases—from a satellite, for instance—can be performed with conventional instruments called spectrometers, but while satellite instruments have global coverage, they sample specific regions on Earth infrequently. Therefore, regional measurements are made with ground-based point sensors, which have a range that can be measured in meters and varies with wind conditions. There are no portable sensors that can measure multiple gases at long range with consistent results.

The NIST comb system was built to detect gases, including carbon dioxide, methane, and water over 2 kilometers. In principle, the dual-comb technique could detect an even wider range of gases over many kilometers. Accuracy in the measured atmospheric transmission is assured by the well-defined position of each frequency comb tooth.

Because the technique makes repeated measurements rapidly over the same path, it is immune to signal distortions caused by atmospheric turbulence. And because the comb measurements can be averaged over the entire path length rather than relying on a few spot measurements, the comb method is better matched to the scale of atmospheric transport models.

In the demonstration, the research team collected data continuously for three days under varied weather conditions. The results were comparable to data collected by a nearby point sensor under well-mixed atmospheric conditions. The comb measurements were also very precise—with uncertainty of less than 1 part per million for carbon dioxide, for example, obtained in five minutes. That's precise enough to ensure detection of small increases in trace gases due to large, distributed sources such as cities. Future systems should be able to achieve even better sensitivities over shorter timescales.

Overall, the study results suggest that the dual comb technique is ideally suited to precise, reproducible sensing of trace gases in the atmosphere and can support the development of accurate models for use in global, satellite-based greenhouse gas monitoring.

NIST researchers now plan to optimize the comb system by boosting power to improve sensitivity and expanding spectral coverage to identify additional gases. Portable frequency comb systems** could eventually support regional gas monitoring at costs comparable to point sensors, the researchers say, but over the kilometer scales relevant to many transport models and to monitoring of distributed sources such as large cities.

* G.B. Rieker, F.R. Giorgetta, W.C. Swann, J. Kofler, A.M. Zolot, L.C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P.P. Tans, I. Coddington and N.R. Newbury. Frequency comb-based remote sensing of greenhouse gases over kilometer air paths. Optica. Vol. 1, Issue 5. Posted online Oct. 29, 2014. DOI: 10.1364/OPTICA.1.000290.

** See "Portable Frequency Comb Rolls Out of the Lab" at http://www.nist.gov/pml/div686/sources_detectors/portable_frequency_comb.cfm 

Laura Ost | EurekAlert!

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>