Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST 'combs' the atmosphere to measure greenhouse gases


By remotely "combing" the atmosphere with a custom laser-based instrument, researchers from the National Institute of Standards and Technology (NIST), in collaboration with researchers from the National Oceanic and Atmospheric Administration (NOAA), have developed a new technique that can accurately measure—over a sizeable distance—amounts of several of the major "greenhouse" gases implicated in climate change.

The technique potentially could be used in several ways to support research on atmospheric greenhouse gases. It can provide accurate data to support ongoing and future satellite monitoring of the composition of the atmosphere. With development, more portable systems based on the technology could provide very accurate, continuous regional monitoring of these gases over kilometer scales—a capability lacking with current monitoring techniques.

Photo illustration of NIST experiment using a pair of laser frequency combs (depicted as rainbow-colored cartoons) to detect the simultaneous signatures of several 'greenhouse' gases along a 2-kilometer path between a NIST laboratory roof and a nearby mesa. Each comb 'tooth' represents a different frequency of light. To identify gases in the atmosphere, researchers measured the amount of comb light absorbed at different frequencies along the path.

Credit: Burrus and Irvine/NIST

In the recent demonstration,* NIST's pair of laser frequency combs measured the simultaneous signatures of several greenhouse gases—including carbon dioxide, methane and water vapor—along a 2-kilometer path between a NIST laboratory roof in Boulder, Colo., and a nearby mesa.

Frequency combs are laser-generated tools made up of a large number of very precisely defined frequencies that are evenly spaced, like the teeth on a pocket comb. Each comb "tooth" represents an individual color, or frequency, enabling very accurate measurements of the characteristic absorption signatures of different gas molecules of interest.

Researchers identified gases in the atmosphere by measuring the amount of comb light absorbed at different frequencies during its trip from the NIST lab roof to a mirror on the mesa and back to a detector in a lab. Because the optical frequencies are too high to be measured directly, the researchers borrowed a trick from early radio. They created two combs with slightly different spacing between the teeth. Mixing light from these dual frequency combs together creates a "beat" frequency shifted down to the radio band, low enough to be measured. This was the first demonstration of the technique over long distances outdoors.

Remote sensing of atmospheric gases—from a satellite, for instance—can be performed with conventional instruments called spectrometers, but while satellite instruments have global coverage, they sample specific regions on Earth infrequently. Therefore, regional measurements are made with ground-based point sensors, which have a range that can be measured in meters and varies with wind conditions. There are no portable sensors that can measure multiple gases at long range with consistent results.

The NIST comb system was built to detect gases, including carbon dioxide, methane, and water over 2 kilometers. In principle, the dual-comb technique could detect an even wider range of gases over many kilometers. Accuracy in the measured atmospheric transmission is assured by the well-defined position of each frequency comb tooth.

Because the technique makes repeated measurements rapidly over the same path, it is immune to signal distortions caused by atmospheric turbulence. And because the comb measurements can be averaged over the entire path length rather than relying on a few spot measurements, the comb method is better matched to the scale of atmospheric transport models.

In the demonstration, the research team collected data continuously for three days under varied weather conditions. The results were comparable to data collected by a nearby point sensor under well-mixed atmospheric conditions. The comb measurements were also very precise—with uncertainty of less than 1 part per million for carbon dioxide, for example, obtained in five minutes. That's precise enough to ensure detection of small increases in trace gases due to large, distributed sources such as cities. Future systems should be able to achieve even better sensitivities over shorter timescales.

Overall, the study results suggest that the dual comb technique is ideally suited to precise, reproducible sensing of trace gases in the atmosphere and can support the development of accurate models for use in global, satellite-based greenhouse gas monitoring.

NIST researchers now plan to optimize the comb system by boosting power to improve sensitivity and expanding spectral coverage to identify additional gases. Portable frequency comb systems** could eventually support regional gas monitoring at costs comparable to point sensors, the researchers say, but over the kilometer scales relevant to many transport models and to monitoring of distributed sources such as large cities.

* G.B. Rieker, F.R. Giorgetta, W.C. Swann, J. Kofler, A.M. Zolot, L.C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P.P. Tans, I. Coddington and N.R. Newbury. Frequency comb-based remote sensing of greenhouse gases over kilometer air paths. Optica. Vol. 1, Issue 5. Posted online Oct. 29, 2014. DOI: 10.1364/OPTICA.1.000290.

** See "Portable Frequency Comb Rolls Out of the Lab" at 

Laura Ost | EurekAlert!

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>