Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered natural arch in Afghanistan one of world's largest

31.03.2011
Awestruck researchers add Afghan natural wonder to list of behemoths

Researchers from the Wildlife Conservation Society have stumbled upon a geological colossus in a remote corner of Afghanistan: a natural stone arch spanning more than 200 feet across its base.


WCS staff found the arch during a wildlife survey of the Bamyan Plateau in central Afghanistan. Credit: Ayub Alavi

Located at the central highlands of Afghanistan, the recently discovered Hazarchishma Natural Bridge is more than 3,000 meters (nearly 10,000 feet) above sea level, making it one of the highest large natural bridges in the world. It also ranks among the largest such structures known.

"It's one of the most spectacular discoveries ever made in this region," said Joe Walston, Director of the Wildlife Conservation Society's Asia Program. "The arch is emblematic of the natural marvels that still await discovery in Afghanistan."

Wildlife Conservation Society staff Christopher Shank and Ayub Alavi discovered the massive arch in late 2010 in the course of surveying the northern edge of the Bamyan plateau for wildlife (the landscape is home to ibex and urial wild sheep) and visiting local communities.

After making the discovery, they returned to the Hazarchishma Natural Bridge (named after a nearby village) in February 2011 to take accurate measure of the natural wonder. The total span of arch—the measurement by which natural bridges are ranked—is 210.6 feet in width, making it the 12th largest natural bridge in the world. This finding pushes Utah's Outlaw Arch in Dinosaur National Monument—smaller than Hazarchishma by more than four feet—to number 13 on the list.

The world's largest natural arch—Fairy Bridge—is located by Buliu River in Guangxi, China, and spans a staggering 400 feet in width. Several of the top 20 largest natural arches are located in the state of Utah in the U.S.

Consisting of rock layers formed between the Jurassic Period (200-145 million years ago) and the more recent Eocene Epoch (55-34 million years ago), the Hazarchishma Natural Bridge was carved over millennia by the once flowing waters of the now dry Jawzari Canyon.

With the assistance of WCS and support from USAID (United States Agency for International Development), the government of Afghanistan has launched several initiatives to safeguard the country's wild places and the wildlife they contain. In 2009, the government gazetted the country's first national park, Band-e-Amir, approximately 100 kilometers south of Hazarchishma Natural Bridge. The park was established with technical assistance from WCS's Afghanistan Program. WCS also worked with Afghanistan's National Environment Protection Agency (NEPA) in producing the country's first-ever list of protected species, an action that now bans the hunting of snow leopards, wolves, brown bears, and other species. In a related effort, WCS now works to limit illegal wildlife trade in the country through educational workshops for soldiers at Bagram Air Base and other military bases across Afghanistan. WCS also works with more than 55 local communities in Afghanistan to better manage their natural resources, helping them conserve wildlife while improving their livelihoods.

"Afghanistan has taken great strides in initiating programs to preserve the country's most beautiful wild places as well as conserve its natural resources," said Peter Zahler, Deputy Director for the WCS Asia Program. "This newfound marvel adds to the country's growing list of natural wonders and economic assets."

John Delaney | EurekAlert!
Further information:
http://www.wcs.org

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>