Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered Icelandic current could change North Atlantic climate picture

22.08.2011
An international team of researchers, including physical oceanographers from the Woods Hole Oceanographic Institution (WHOI), has confirmed the presence of a deep-reaching ocean circulation system off Iceland that could significantly influence the ocean's response to climate change in previously unforeseen ways.

The current, called the North Icelandic Jet (NIJ), contributes to a key component of the Atlantic Meridional Overturning Circulation (AMOC), also known as the "great ocean conveyor belt," which is critically important for regulating Earth's climate.

As part of the planet's reciprocal relationship between ocean circulation and climate, this conveyor belt transports warm surface water to high latitudes where the water warms the air, then cools, sinks, and returns towards the equator as a deep flow.

Crucial to this warm-to-cold oceanographic choreography is the Denmark Strait Overflow Water (DSOW), the largest of the deep, overflow plumes that feed the lower limb of the conveyor belt and return the dense water south through gaps in the Greenland-Scotland Ridge.

For years it has been thought that the primary source of the Denmark Overflow is a current adjacent to Greenland known as the East Greenland Current. However, this view was recently called into question by two oceanographers from Iceland who discovered a deep current flowing southward along the continental slope of Iceland. They named the current the North Icelandic Jet and hypothesized that it formed a significant part of the overflow water.

Now, in a paper published in the Aug. 21 online issue of the journal Nature Geoscience, the team of researchers—including the two Icelanders who discovered it—has confirmed that the Icelandic Jet is not only a major contributor to the DSOW but "is the primary source of the densest overflow water."

"In our paper we present the first comprehensive measurements of the NIJ," said Robert S. Pickart of WHOI, one of the authors of the study. "Our data demonstrate that the NIJ indeed carries overflow water into Denmark Strait and is distinct from the East Greenland Current. We show that the NIJ constitutes approximately half of the total overflow transport and nearly all of the densest component.

The researchers used a numerical model to hypothesize where and how the NIJ is formed. "We've identified a new paradigm," he said. "We're hypothesizing a new, overturning loop" of warm water to cold.

The results, Pickart says, have "important ramifications" for ocean circulation's impact on climate. Climate specialists have been concerned that the conveyor belt is slowing down due to a rise in global temperatures. They suggest that increasing amounts of fresh water from melting ice and other warming-related phenomena are making their way into the northern North Atlantic, where it could freeze, which would prevent the water from sinking and decrease the need for the loop to deliver as much warm water as it does now. Eventually, this could lead to a colder climate in the northern hemisphere.

While this scenario is far from certain, it is critical that researchers understand the overturning process, he said, to be able to make accurate predictions about the future of climate and circulation interaction. "If a large fraction of the overflow water comes from the NIJ, then we need to re-think how quickly the warm-to-cold conversion of the AMOC occurs, as well as how this process might be altered under a warming climate," Pickart said.

"These results implicate local water mass transformation and exchange near Iceland as central contributors to the deep limb of the Atlantic Meridional Overturning Circulation, and raise new questions about how global ocean circulation will respond to future climate change," said Eric Itsweire, program director in the U.S. National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the research.

The Research Council of Norway also funded the analysis of the data.

Pickart and a team of scientists from the U.S., Iceland, Norway, and the Netherlands are scheduled to embark on Aug. 22 on a cruise aboard the WHOI-operated R/V Knorr to collect new information on the overturning in the Iceland Sea.

"During our upcoming cruise on the Knorr we will, for the first time, deploy an array of year-long moorings across the entire Denmark Strait to quantify the NIJ and distinguish it from the East Greenland Current," Pickart said. "Then we will collect shipboard measurements in the Iceland Sea to the north of the mooring line to determine more precisely where and how the NIJ originates."

In addition to Pickart, authors of the Nature Geoscience study include Michael A. Spall, and Daniel J. Torres of WHOI, lead author Kjetil Våge, a graduate of the MIT-WHOI joint program now with University of Bergen, Norway, Svein Østerhus and Tor Eldevik, also of the University of Bergen, Norway, and Héðinn Valdimarsson and Steingrímur Jónsson—the two discoverers of the NIJ—of the Marine Research Institute in Reykjavik, Iceland.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>