Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly discovered Icelandic current could change North Atlantic climate picture

An international team of researchers, including physical oceanographers from the Woods Hole Oceanographic Institution (WHOI), has confirmed the presence of a deep-reaching ocean circulation system off Iceland that could significantly influence the ocean's response to climate change in previously unforeseen ways.

The current, called the North Icelandic Jet (NIJ), contributes to a key component of the Atlantic Meridional Overturning Circulation (AMOC), also known as the "great ocean conveyor belt," which is critically important for regulating Earth's climate.

As part of the planet's reciprocal relationship between ocean circulation and climate, this conveyor belt transports warm surface water to high latitudes where the water warms the air, then cools, sinks, and returns towards the equator as a deep flow.

Crucial to this warm-to-cold oceanographic choreography is the Denmark Strait Overflow Water (DSOW), the largest of the deep, overflow plumes that feed the lower limb of the conveyor belt and return the dense water south through gaps in the Greenland-Scotland Ridge.

For years it has been thought that the primary source of the Denmark Overflow is a current adjacent to Greenland known as the East Greenland Current. However, this view was recently called into question by two oceanographers from Iceland who discovered a deep current flowing southward along the continental slope of Iceland. They named the current the North Icelandic Jet and hypothesized that it formed a significant part of the overflow water.

Now, in a paper published in the Aug. 21 online issue of the journal Nature Geoscience, the team of researchers—including the two Icelanders who discovered it—has confirmed that the Icelandic Jet is not only a major contributor to the DSOW but "is the primary source of the densest overflow water."

"In our paper we present the first comprehensive measurements of the NIJ," said Robert S. Pickart of WHOI, one of the authors of the study. "Our data demonstrate that the NIJ indeed carries overflow water into Denmark Strait and is distinct from the East Greenland Current. We show that the NIJ constitutes approximately half of the total overflow transport and nearly all of the densest component.

The researchers used a numerical model to hypothesize where and how the NIJ is formed. "We've identified a new paradigm," he said. "We're hypothesizing a new, overturning loop" of warm water to cold.

The results, Pickart says, have "important ramifications" for ocean circulation's impact on climate. Climate specialists have been concerned that the conveyor belt is slowing down due to a rise in global temperatures. They suggest that increasing amounts of fresh water from melting ice and other warming-related phenomena are making their way into the northern North Atlantic, where it could freeze, which would prevent the water from sinking and decrease the need for the loop to deliver as much warm water as it does now. Eventually, this could lead to a colder climate in the northern hemisphere.

While this scenario is far from certain, it is critical that researchers understand the overturning process, he said, to be able to make accurate predictions about the future of climate and circulation interaction. "If a large fraction of the overflow water comes from the NIJ, then we need to re-think how quickly the warm-to-cold conversion of the AMOC occurs, as well as how this process might be altered under a warming climate," Pickart said.

"These results implicate local water mass transformation and exchange near Iceland as central contributors to the deep limb of the Atlantic Meridional Overturning Circulation, and raise new questions about how global ocean circulation will respond to future climate change," said Eric Itsweire, program director in the U.S. National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the research.

The Research Council of Norway also funded the analysis of the data.

Pickart and a team of scientists from the U.S., Iceland, Norway, and the Netherlands are scheduled to embark on Aug. 22 on a cruise aboard the WHOI-operated R/V Knorr to collect new information on the overturning in the Iceland Sea.

"During our upcoming cruise on the Knorr we will, for the first time, deploy an array of year-long moorings across the entire Denmark Strait to quantify the NIJ and distinguish it from the East Greenland Current," Pickart said. "Then we will collect shipboard measurements in the Iceland Sea to the north of the mooring line to determine more precisely where and how the NIJ originates."

In addition to Pickart, authors of the Nature Geoscience study include Michael A. Spall, and Daniel J. Torres of WHOI, lead author Kjetil Våge, a graduate of the MIT-WHOI joint program now with University of Bergen, Norway, Svein Østerhus and Tor Eldevik, also of the University of Bergen, Norway, and Héðinn Valdimarsson and Steingrímur Jónsson—the two discoverers of the NIJ—of the Marine Research Institute in Reykjavik, Iceland.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Media Relations | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>