Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered Icelandic current could change climate picture

24.08.2011
Current called North Icelandic Jet contributes to key component of ocean circulation

If you'd like to cool off fast in hot summer weather, take a dip in a newly discovered ocean current called the North Icelandic Jet (NIJ).

You'd need to be far, far below the sea's surface near Iceland, however, to reach it.

Scientists have confirmed the presence of the NIJ, a deep-ocean circulation system off Iceland. It could significantly influence the ocean's response to climate change.

The NIJ contributes to a key component of the Atlantic Meridional Overturning Circulation (AMOC), critically important for regulating Earth's climate.

As part of the planet's reciprocal relationship between ocean circulation and climate, the AMOC transports warm surface water to high latitudes where the water warms the air, then cools, sinks and returns toward the equator as a deep flow.

Crucial to this warm-to-cold oceanographic choreography is the Denmark Strait Overflow Water (DSOW), the largest of the deep, overflow plumes that feed the lower limb of the AMOC and return the dense water south through gaps in the Greenland-Scotland Ridge.

For years it has been thought that the primary source of the Denmark Overflow was a current adjacent to Greenland known as the East Greenland Current.

However, this view was recently called into question by two oceanographers from Iceland who discovered a deep current flowing southward along the continental slope of Iceland.

They named the current the North Icelandic Jet and hypothesized that it formed a significant part of the overflow water.

Now, in a paper published in the August 21st online issue of the journal Nature Geoscience, the team of researchers--including the two Icelanders who discovered the current--has confirmed that the Icelandic Jet is not only a major contributor to the DSOW but "is the primary source of the densest overflow water."

"We present the first comprehensive measurements of the NIJ," said Robert Pickart of the Woods Hole Oceanographic Instititution in Massachusetts, one of the co-authors of the paper.

"Our data demonstrate that the NIJ indeed carries overflow water into Denmark Strait and is distinct from the East Greenland Current. The NIJ constitutes approximately half of the total overflow transport and nearly all of the densest component."

The researchers used a numerical model to hypothesize where and how the NIJ is formed.

"These results implicate water mass transformation and exchange near Iceland as central contributors to the deep limb of the Atlantic Meridional Overturning Circulation, and raise new questions about how global ocean circulation will respond to future climate change," said Eric Itsweire, program director in the U.S. National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the research.

"We've identified a new paradigm," Pickart said, likely a new, overturning loop of warm to cold water.

The results, Pickart says, have "important ramifications" for ocean circulation's impact on climate.

Scientists have been concerned that this overturning loop--some call it a conveyor belt--is slowing down due to a rise in global temperatures.

They suggest that increasing amounts of fresh water from melting ice and other warming-related phenomena are making their way into the northern North Atlantic, where it could freeze and decrease the need for the loop to deliver as much warm water as it does now.

Eventually, this could lead to a colder climate in the northern hemisphere.

While this scenario is far from certain, researchers need to understand the overturning process, Pickart said, to make accurate predictions about the future of climate and circulation interaction.

"If a large fraction of the overflow water comes from the NIJ, then we need to re-think how quickly the warm-to-cold conversion of the AMOC occurs, as well as how this process might be altered under a warming climate," said Pickart.

Pickart and a team of scientists from the U.S., Iceland, Norway, and the Netherlands are scheduled to embark on August 22nd on a cruise aboard the research vessel Knorr. They will collect new information on the overturning in the Iceland Sea.

"During our upcoming cruise we will deploy an array of year-long moorings across the entire Denmark Strait to quantify the NIJ and distinguish it from the East Greenland Current," Pickart said.

"Then we'll collect shipboard measurements in the Iceland Sea to the north of the mooring line to determine more precisely where and how the NIJ originates."

The cruise will be chronicled at the North Icelandic Jet Cruise website.

In addition to Pickart, authors of the Nature Geoscience paper include Michael Spall and Daniel Torres of WHOI; lead author Kjetil Våge, and co-authors Svein Østerhus and Tor Eldevik, all of the University of Bergen, Norway; and Héðinn Valdimarsson and Steingrímur Jónsson--the co-discoverers of the NIJ--of the Marine Research Institute in Reykjavik, Iceland.

The Research Council of Norway also funded the work.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>