Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered Icelandic current could change climate picture

24.08.2011
Current called North Icelandic Jet contributes to key component of ocean circulation

If you'd like to cool off fast in hot summer weather, take a dip in a newly discovered ocean current called the North Icelandic Jet (NIJ).

You'd need to be far, far below the sea's surface near Iceland, however, to reach it.

Scientists have confirmed the presence of the NIJ, a deep-ocean circulation system off Iceland. It could significantly influence the ocean's response to climate change.

The NIJ contributes to a key component of the Atlantic Meridional Overturning Circulation (AMOC), critically important for regulating Earth's climate.

As part of the planet's reciprocal relationship between ocean circulation and climate, the AMOC transports warm surface water to high latitudes where the water warms the air, then cools, sinks and returns toward the equator as a deep flow.

Crucial to this warm-to-cold oceanographic choreography is the Denmark Strait Overflow Water (DSOW), the largest of the deep, overflow plumes that feed the lower limb of the AMOC and return the dense water south through gaps in the Greenland-Scotland Ridge.

For years it has been thought that the primary source of the Denmark Overflow was a current adjacent to Greenland known as the East Greenland Current.

However, this view was recently called into question by two oceanographers from Iceland who discovered a deep current flowing southward along the continental slope of Iceland.

They named the current the North Icelandic Jet and hypothesized that it formed a significant part of the overflow water.

Now, in a paper published in the August 21st online issue of the journal Nature Geoscience, the team of researchers--including the two Icelanders who discovered the current--has confirmed that the Icelandic Jet is not only a major contributor to the DSOW but "is the primary source of the densest overflow water."

"We present the first comprehensive measurements of the NIJ," said Robert Pickart of the Woods Hole Oceanographic Instititution in Massachusetts, one of the co-authors of the paper.

"Our data demonstrate that the NIJ indeed carries overflow water into Denmark Strait and is distinct from the East Greenland Current. The NIJ constitutes approximately half of the total overflow transport and nearly all of the densest component."

The researchers used a numerical model to hypothesize where and how the NIJ is formed.

"These results implicate water mass transformation and exchange near Iceland as central contributors to the deep limb of the Atlantic Meridional Overturning Circulation, and raise new questions about how global ocean circulation will respond to future climate change," said Eric Itsweire, program director in the U.S. National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the research.

"We've identified a new paradigm," Pickart said, likely a new, overturning loop of warm to cold water.

The results, Pickart says, have "important ramifications" for ocean circulation's impact on climate.

Scientists have been concerned that this overturning loop--some call it a conveyor belt--is slowing down due to a rise in global temperatures.

They suggest that increasing amounts of fresh water from melting ice and other warming-related phenomena are making their way into the northern North Atlantic, where it could freeze and decrease the need for the loop to deliver as much warm water as it does now.

Eventually, this could lead to a colder climate in the northern hemisphere.

While this scenario is far from certain, researchers need to understand the overturning process, Pickart said, to make accurate predictions about the future of climate and circulation interaction.

"If a large fraction of the overflow water comes from the NIJ, then we need to re-think how quickly the warm-to-cold conversion of the AMOC occurs, as well as how this process might be altered under a warming climate," said Pickart.

Pickart and a team of scientists from the U.S., Iceland, Norway, and the Netherlands are scheduled to embark on August 22nd on a cruise aboard the research vessel Knorr. They will collect new information on the overturning in the Iceland Sea.

"During our upcoming cruise we will deploy an array of year-long moorings across the entire Denmark Strait to quantify the NIJ and distinguish it from the East Greenland Current," Pickart said.

"Then we'll collect shipboard measurements in the Iceland Sea to the north of the mooring line to determine more precisely where and how the NIJ originates."

The cruise will be chronicled at the North Icelandic Jet Cruise website.

In addition to Pickart, authors of the Nature Geoscience paper include Michael Spall and Daniel Torres of WHOI; lead author Kjetil Våge, and co-authors Svein Østerhus and Tor Eldevik, all of the University of Bergen, Norway; and Héðinn Valdimarsson and Steingrímur Jónsson--the co-discoverers of the NIJ--of the Marine Research Institute in Reykjavik, Iceland.

The Research Council of Norway also funded the work.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>