Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newborn Dinosaur Discovered in Maryland

No, this isn’t Jurassic Park. Researchers at the Johns Hopkins University School of Medicine with help from an amateur fossil hunter in College Park, Md., have described the fossil of an armored dinosaur hatchling.

It is the youngest nodosaur ever discovered, and a founder of a new genus and species that lived approximately 110 million years ago during the Early Cretaceous Era. Nodosaurs have been found in diverse locations worldwide, but they’ve rarely been found in the United States.

The findings are published in the September 9 issue of the Journal of Paleontology.

“Now we can learn about the development of limbs and the development of skulls early on in a dinosaur’s life,” says David Weishampel, Ph.D., a professor of anatomy at the Johns Hopkins University School of Medicine. “The very small size also reveals that there was a nearby nesting area or rookery, since it couldn’t have wandered far from where it hatched. We have the opportunity to find out about dinosaur parenting and reproductive biology, as well as more about the lives of Maryland dinosaurs in general."

The fossil was discovered in 1997 by Ray Stanford, a dinosaur tracker who often spent time looking for fossils close to his home; this time he was searching a creek bed after an extensive flood.

Stanford identified it as a nodosaur and called Weishampel, a paleontologist and expert in dinosaur systematics. Weishampel and his colleagues established the fossil’s identity as a nodosaur by identifying a distinctive pattern of bumps and grooves on the skull. They then did a computer analysis of the skull shape, comparing its proportions to those of ten skulls from different species of ankylosaurs, the group that contains nodosaurs. They found that this dinosaur was closely related to some of the nodosaur species, although it had a shorter snout overall than the others. Comparative measurements enabled them to designate a new species, Propanoplosaurus marylandicus. In addition to being the youngest nodosaur ever found, it is the first hatchling of any dinosaur species ever recovered in the eastern United States, says Weishampel.

The area had originally been a flood plain, where Weishampel says that the dinosaur originally drowned. Cleaning the fossil revealed a hatchling nodosaur on its back, much of its body imprinted along with the top of its skull. Weishampel determined the dinosaur’s age at time of death by analyzing the degree of development and articulation capability of the ends of the bones, as well as deducing whether the bones themselves were porous, as young bones would not be fully solid.

Size was also a clue: the body in the tiny fossil was only 13 cm long, just shorter than the length of a dollar bill. Adult nodosaurs are estimated to have been 20 to 30 feet long. Weishampel also used the position and quality of the fossil to deduce the dinosaur’s method of death and preservation: drowning, and getting buried by sediment in the stream. Egg shells have never been found preserved in the vicinity, and by the layout of the bones and the size of some very small nodosaur footprints found nearby, led Weishampel to believe that the dinosaur was a hatchling, rather than an embryo, because it was able to walk independently.

“We didn’t know much about hatchling nodosaurs at all prior to this discovery,” says Weishampel. “And this is certainly enough to motivate more searches for dinosaurs in Maryland, along with more analysis of Maryland dinosaurs.”

Stanford has donated the hatchling nodosaur to the Smithsonian’s National Museum of Natural History, where it is now on display to the public and also available for research.

This study was funded by the Johns Hopkins Center of Functional Anatomy and Evolution.

Valerie DeLeon, also of the Center of Functional Anatomy and Evolution, was an additional author.

On the Web:
Center for Functional Anatomy and Evolution,
David Weishampel,
Journal of Paleontology,

Sarah Lewin | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>