Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique tracks 'heartbeat' of hundreds of wetlands

17.03.2016

For two University of Washington researchers, the real test came as they walked across a barren-looking field.

They were on the Columbia Plateau with two state wetland ecologists, searching for a 1-acre body of water identified and mapped for the first time using a new method they developed. But when the group arrived at the expected coordinates, map in hand, the soil was dry and cracked and there wasn't a wetland in sight.


This is a wintertime view of wetlands in Douglas County, Washington.

Credit: Meghan Halabisky/University of Washington

Then, one of the ecologists sunk a shovel into the ground, looked at the characteristics of the soil, and put everyone's worries to rest: The wetland was there, all right -- it just happened to be in a dry phase.

"I remember getting goosebumps when I realized our method worked," said L. Monika Moskal, an associate professor in the UW's School of Environmental and Forest Sciences.

This fine-tuned knowledge is the result of a new approach to better understand the hydrology of Eastern Washington's wetlands. Now, researchers have an abundance of data about how these wetlands behave seasonally, which will also help monitor how they change as the climate warms.

"One of the things that makes wetlands so hard to study is their dynamic nature, the patterns of flooding and drying," said Meghan Halabisky, a UW doctoral student in environmental and forest sciences and lead author of a new paper appearing in the May edition of Remote Sensing of Environment.

"That element is also the thing that makes wetlands so fascinating and so unique. They have really high levels of biodiversity and unique species you won't find anywhere else."

In Washington and elsewhere, wetlands hold water on the landscape and help prevent flooding. They also filter and remove sediment and excess nutrients from entering rivers and larger bodies of water like Puget Sound, and they provide an important water source for grazing animals and migrating species.

Across the U.S. and particularly in Washington state, very little is known about the acreage, yearly flooding cycles and even the actual locations of wetlands. Even hazier is what could happen to these vital ecosystems under climate change.

To get at these questions, Halabisky and collaborators used open-access satellite images (through Landsat, a joint effort by the U.S. Geological Survey and NASA) taken every 16 days from 1984 to 2011 in Washington's Douglas County. Though these images are shot with impressive regularity and can show changes over time, the resolution is coarse. One Landsat photo pixel is roughly 30 square meters (100 square feet), making it impossible to see wetlands smaller than that size.

They used high-resolution images from the same region to train a computer algorithm to "see" structural elements of wetlands and delineate them from other parts of the landscape. For example, water absorbs light differently than sagebrush or other plants, giving the water in a wetland a unique, identifiable signature.

"Each material has a unique pattern of absorbing and reflecting light. And based on those unique patterns, we can deconstruct each Landsat pixel and find out how much water, sage steppe and other vegetation is composed within that pixel," Halabisky said.

The researchers applied this method to satellite images taken on about 200 dates over the same areas on the landscape, producing flooding and drying patterns (called hydrographs) for 750 wetlands in Eastern Washington.

"This method is unique because it's essentially taking the pulse of the landscape -- the time-series data (graphs) look like a heartbeat as the water in wetlands fills up, then goes down. We can track this for decades now," said Moskal, senior author on the paper and director of the UW's Remote Sensing and Geospatial Analysis Laboratory.

They also are able to identify wetlands, particularly small ones, that weren't previously on the radar of land managers and other stakeholders who use the semi-arid landscape in Douglas County. The wetlands in this region are an important resource for cattle ranchers, tribes and organizations like Ducks Unlimited.

Researchers with the UW's Climate Impacts Group will use these data in their models to make projections on how individual wetlands in Eastern Washington could behave under climate change. Halabisky, who has worked in the region for years and revisited a number of the same sites, is sometimes surprised by what she sees.

"I think there's an assumption that wetlands in arid regions are just going to dry out. In two of my study areas that wasn't the case at all," she said. "That may change under climate change when we do that modeling."

Halabisky is leading an effort in Douglas County to convene land managers and stakeholders in planning for the future of wetlands as the climate warms. Their first workshop in early March drew upon the new seasonal data available for each wetland in the region.

Little is known about wetlands in Western Washington as well, and the researchers hope to use other remote-sensing techniques such as Lidar to characterize their locations and seasonal patterns. Shadows from tree cover west of the Cascades make it hard to use the method described in this paper.

###

Other co-authors are Alan Gillespie of the UW's Earth and space sciences department and Michael Hannam of the Smithsonian Environmental Research Center in Maryland. Hannam is a recent graduate of UW who worked with Moskal and Kern Ewing, a professor of environmental and forest sciences.

This research was funded by the U.S. Geological Survey, the U.S. Department of the Interior's Northwest Climate Science Center and the UW's Precision Forestry Cooperative.

For more information, contact Halabisky at halabisk@uw.edu and Moskal at lmmoskal@uw.edu or 206-221-1510.

Grant number: GS276A-AUSGS

Related paper: http://www.sciencedirect.com/science/article/pii/S0034425716300682

Media Contact

Michelle Ma
mcma@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Michelle Ma | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>