Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study of largely unstudied mesophotic coral reef geology

08.07.2014

Researchers compare bioerosion on deeper reef systems to better understand long-term structural sustainability

A new study on biological erosion of mesophotic tropical coral reefs, which are low energy reef environments between 30-150 meters deep, provides new insights into processes that affect the overall structure of these important ecosystems.


This is Platty coral representative of the US Virgin Islands mesophotic habitats.

Credit: Photo by David Weinstein

The purpose of the study was to better understand how bioerosion rates and distribution of bioeroding organisms, such as fish, mollusks and sponges, differ between mesophotic reefs and their shallow-water counterparts and the implications of those variations on the sustainability of the reef structure.

Due to major advancements in deeper underwater diving technology, a large renewal of interest in mesophotic reefs has pulsed through the scientific community because of their high biodiversity, vast extent, and potential refuge for shallower water reef species at risk from the impacts of climate change.

"Studying how mesophotic reefs function and thrive is especially critical now, when considering results from the new IPCC report reviewed by over 1700 expects said that coral reefs are the most vulnerable marine ecosystems on Earth to the adverse effects of climate change," said David Weinstein, Rosenstiel School Ph.D. student and lead author of the study.

"Developing effective environmental management strategies for these important reef systems requires a basic fundamental understanding of the underlining architecture that supports and creates diverse biological ecosystems."

Weinstein and his research team used previously identified mesophotic reefs at 30-50 meters deep located in the U.S. Virgin Islands composed of a surprising number of coral growing on top different types of reef structures (patches, linear banks, basins) to better understand the role sedimentary processes have in creating and maintaining so many different structures that are critical for maximizing the biodiversity and health of the ecosystem. Researchers analyzed coral rubble and coral skeleton discs collected after one and two years of exposure to determine the sources and rates of bioerosion at these reefs.

Results of the study found that the architecturally unique structures in the study area experience significantly different bioerosion rates.

"This has very important implications when trying to predict how these reefs will grow over time and where preservation efforts might be most effective," said Weinstein.

Although erosion of the coral skeleton disks at the very deepest sites was more uniform, the researchers suggest that this is likely because the substrates used in the study were all of uniform composition, unlike the diverse composition of the sites. These results imply that bioerosional processes at these depths still exaggerate differences in reef structure depending on the amount of living and dead coral at each reef, the amount of time that material is exposed on the surface, and different localized current flows experienced.

The study also confirmed important concepts in coral geology research that lacked proof from studies venturing deeper than 35 meters. Coral reef bioerosion in the U.S. Virgin Islands and potentially in most of the Caribbean does generally decreases with depth. This result stems from the finding that parrotfish are now the most significant bioeroding group from shallow reefs down to a mesophotic reef transition zone identified by Weinstein at 30-35 meters in depth. The study also was able to conclude bioeroding sponges are the primary organisms responsible for long-term structural modification of mesophotic reefs beyond the transitional zone.

"Coral reefs are essentially a thin benthos veneer draped upon a biologically produced inorganic three-dimensional foundation that creates habitats for many marine organisms," said Weinstein. "Since mesophotic reefs grow so much slower than shallower reefs, identifying the sources and rate of erosion on mesophotic reefs is even more important to understand the long-term structural sustainability of these tropical reefs systems."

However, Weinstein suggests that other processes, such as coral growth rates and cementation, must also be more fully studied before scientists have a complete understanding of mesophotic coral reefs.

The paper, currently available online and scheduled for print in a special coral reef edition of the journal Geomorphology later this summer is one of the first to address mesophotic reef sedimentology.

More information, videos, pictures, and new developments can be found at: http://www.rsmas.miami.edu/users/dweinstein/ and at https://www.facebook.com/UmMesophoticGeologyLab

About the University of Miami's Rosenstiel School The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit: http://www.rsmas.miami.edu

Diana Udel | Eurek Alert!

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>