Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study explains near-annual Monsoon oscillations generated by El Niño

20.10.2015

A new research study by a team of climate researchers from the University of Hawai'i at Mānoa explains for the first time the source of near-annual pressure and wind changes discovered previously in the Southeast Asian Monsoon system.

The results, published this week in the journal Proceedings of the National Academy of Sciences, show how the El Niño phenomenon interacts with the annual cycle of solar radiation in the western Pacific to generate a suite of new atmospheric pressure oscillations that affects wind and rainfall patterns in Southeast Asia, one of the densest populated areas on our planet.


Sea surface temperature anomalies [degrees Celsius] of September 2015 from NOAA's Extended Reconstructed Sea Surface Temperature (ERSST) dataset.

Credit: Smith et al., 2008: Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006), J. Climate, 21, 2283-2296.

There still remain major uncertainties about how the atmospheric circulation and the rainfall patterns over Southeast Asia and the Western Tropical Pacific respond to El Niño conditions, such as the current 2015 event.

The new findings by Malte Stuecker and Fei-Fei Jin, from the Department of Atmospheric Sciences, and Axel Timmermann from the International Pacific Research Center at the University of Hawai'i, Mānoa demonstrate that the atmospheric reaction is much more predictable than previously assumed.

As a result of the developing and decaying El Niño conditions and the seasonal march of the sun across the equator, a series of near-annual atmosphere oscillations is generated with periods of about 24, 16, 10, and 8 months, each with its own characteristic pressure pattern.

All of these contribute to the formation of an extended and very persistent high pressure system over the western tropical Pacific, which peaks in January and re-emerges in the boreal summer of the following La Niña year.

"Known as the Philippine Sea Anticyclone, this pattern plays a pivotal role in how the effects of El Niño are expressed in Southeast Asia," explains Stuecker, climate scientist and lead author of the study. "In the past, many researchers looked at seasonal averages of wind and rainfall and missed the details of this variability," he adds.

"Our new theory also explains the observed persistence of the Philippine Sea Anticyclone, even months after El Niño warming has subsided and well into the subsequent La Niña summer. The effect of El Niño in winter is qualitatively similar to the effect of La Niña in summer. These effects occur when the phases of Pacific warming and the annual solar cycle coincide," says co-author Fei-Fei Jin, climate researcher and Professor at the Department of Atmospheric Sciences.

"These near-annual monsoon oscillations have some resemblance to the different ringing tones of a bell. Finding a new structure in the chaos of otherwise random weather variability has been very exciting, because it may open the door to enhanced seasonal predictability," says co-author Axel Timmermann, Professor at the Oceanography Department and the International Pacific Research Center.

The scientists emphasize that this mechanism provides a fundamentally new way to understand variability in the atmosphere on a large range of timescales and can be applied to a number of different climate phenomena.

Media Contact

Rachel Lentz
rlentz@hawaii.edu
808-956-8175

 @UHManoaNews

http://manoa.hawaii.edu 

Rachel Lentz | EurekAlert!

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>