Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study explains near-annual Monsoon oscillations generated by El Niño

20.10.2015

A new research study by a team of climate researchers from the University of Hawai'i at Mānoa explains for the first time the source of near-annual pressure and wind changes discovered previously in the Southeast Asian Monsoon system.

The results, published this week in the journal Proceedings of the National Academy of Sciences, show how the El Niño phenomenon interacts with the annual cycle of solar radiation in the western Pacific to generate a suite of new atmospheric pressure oscillations that affects wind and rainfall patterns in Southeast Asia, one of the densest populated areas on our planet.


Sea surface temperature anomalies [degrees Celsius] of September 2015 from NOAA's Extended Reconstructed Sea Surface Temperature (ERSST) dataset.

Credit: Smith et al., 2008: Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006), J. Climate, 21, 2283-2296.

There still remain major uncertainties about how the atmospheric circulation and the rainfall patterns over Southeast Asia and the Western Tropical Pacific respond to El Niño conditions, such as the current 2015 event.

The new findings by Malte Stuecker and Fei-Fei Jin, from the Department of Atmospheric Sciences, and Axel Timmermann from the International Pacific Research Center at the University of Hawai'i, Mānoa demonstrate that the atmospheric reaction is much more predictable than previously assumed.

As a result of the developing and decaying El Niño conditions and the seasonal march of the sun across the equator, a series of near-annual atmosphere oscillations is generated with periods of about 24, 16, 10, and 8 months, each with its own characteristic pressure pattern.

All of these contribute to the formation of an extended and very persistent high pressure system over the western tropical Pacific, which peaks in January and re-emerges in the boreal summer of the following La Niña year.

"Known as the Philippine Sea Anticyclone, this pattern plays a pivotal role in how the effects of El Niño are expressed in Southeast Asia," explains Stuecker, climate scientist and lead author of the study. "In the past, many researchers looked at seasonal averages of wind and rainfall and missed the details of this variability," he adds.

"Our new theory also explains the observed persistence of the Philippine Sea Anticyclone, even months after El Niño warming has subsided and well into the subsequent La Niña summer. The effect of El Niño in winter is qualitatively similar to the effect of La Niña in summer. These effects occur when the phases of Pacific warming and the annual solar cycle coincide," says co-author Fei-Fei Jin, climate researcher and Professor at the Department of Atmospheric Sciences.

"These near-annual monsoon oscillations have some resemblance to the different ringing tones of a bell. Finding a new structure in the chaos of otherwise random weather variability has been very exciting, because it may open the door to enhanced seasonal predictability," says co-author Axel Timmermann, Professor at the Oceanography Department and the International Pacific Research Center.

The scientists emphasize that this mechanism provides a fundamentally new way to understand variability in the atmosphere on a large range of timescales and can be applied to a number of different climate phenomena.

Media Contact

Rachel Lentz
rlentz@hawaii.edu
808-956-8175

 @UHManoaNews

http://manoa.hawaii.edu 

Rachel Lentz | EurekAlert!

More articles from Earth Sciences:

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

nachricht A huge hydrogen generator at the Earth's core-mantle boundary
24.11.2017 | Science China Press

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>