Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research suggests Saharan dust is key to the formation of Bahamas' Great Bank

25.07.2014

UM Rosenstiel scientists studied how fertilization of region could trigger carbonate formation

A new study suggests that Saharan dust played a major role in the formation of the Bahamas islands. Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science showed that iron-rich Saharan dust provides the nutrients necessary for specialized bacteria to produce the island chain's carbonate-based foundation.


Distribution of insoluble material in the sediments and collection sites are shown. The insoluble material is derived from atmospheric dust.

Credit: Peter Swart, Ph.D., UM Rosenstiel School of Marine and Atmospheric Science


This is the Great Bahama Bank.

Credit: NASA

UM Rosenstiel School Lewis G. Weeks Professor Peter Swart and colleagues analyzed the concentrations of two trace elements characteristic of atmospheric dust – iron and manganese – in 270 seafloor samples collected along the Great Bahama Bank over a three-year period. The team found that the highest concentrations of these trace elements occurred to the west of Andros Island, an area which has the largest concentration of whitings, white sediment-laden bodies of water produced by photosynthetic cyanobacteria.

"Cyanobacteria need 10 times more iron than other photosynthesizers because they fix atmospheric nitrogen," said Swart, lead author of the study. "This process draws down the carbon dioxide and induces the precipitation of calcium carbonate, thus causing the whiting. The signature of atmospheric nitrogen, its isotopic ratio is left in the sediments."

Swart's team suggests that high concentrations of iron-rich dust blown across the Atlantic Ocean from the Sahara is responsible for the existence of the Great Bahama Bank, which has been built up over the last 100 million years from sedimentation of calcium carbonate. The dust particles blown into the Bahamas' waters and directly onto the islands provide the nutrients necessary to fuel cyanobacteria blooms, which in turn, produce carbonate whitings in the surrounding waters.

Persistent winds across Africa's 3.5-million square mile Sahara Desert lifts mineral-rich sand into the atmosphere where it travels the nearly 5,000-mile northwest journey towards the U.S. and Caribbean. The paper, titled "The fertilization of the Bahamas by Saharan dust: A trigger for carbonate precipitation?" was published in the early online edition of the journal Geology. The paper's authors include Swart, Amanda Oehlert, Greta Mackenzie, Gregor Eberli from the UM Rosenstiel School's Department of Marine Geosciences and John Reijmer of VU University Amsterdam in the Netherlands.

###

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | Eurek Alert!

More articles from Earth Sciences:

nachricht How much does groundwater contribute to sea level rise?
03.05.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht Evidence points to widespread loss of ocean oxygen by 2030s
02.05.2016 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>