Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight may help predict volcanic eruption behavior

05.05.2014

A new discovery in the study of how lava dome volcanoes erupt may help in the development of methods to predict how a volcanic eruption will behave, say scientists at the University of Liverpool.


Using friction experiments University of Liverpool scientists have shown that frictional melting plays a role in determining how a volcano will erupt.

Credit: Dr. Jackie Kendrick

Volcanologists at the University have discovered that a process called frictional melting plays a role in determining how a volcano will erupt, by dictating how fast magma can ascend to the surface, and how much resistance it faces en-route.

The process occurs in lava dome volcanoes when magma and rocks melt as they rub against each other due to intense heat. This creates a stop start movement in the magma as it makes its way towards the earth's surface. The magma sticks to the rock and stops moving until enough pressure builds up, prompting it to shift forward again (a process called stick-slip).

Volcanologist, Dr Jackie Kendrick, who lead the research said: "Seismologists have long known that frictional melting takes place when large tectonic earthquakes occur. It is also thought that the stick-slip process that frictional melting generates is concurrent to 'seismic drumbeats' which are the regular, rhythmic small earthquakes which have been recently found to accompany large volcanic eruptions.

"Using friction experiments we have shown that the extent of frictional melting depends on the composition of the rock and magma, which determines how fast or slow the magma travels to the surface during the eruption."

Analysis of lava collected from Mount St. Helens, USA and the Soufrière Hills volcano in Montserrat by volcanology researchers from the University's School of Environmental Sciences revealed remnants of pseudotachylyte, a cooled frictional melt. Evidence showed that the process took place in the conduit, the channel which lava passes through on its way to erupt.

Dr Kendrick, from the University's School of Environmental Sciences, added: "The closer we get to understanding the way magma behaves, the closer we will get to the ultimate goal: predicting volcanic activity when unrest begins. Whilst we can reasonably predict when a volcanic eruption is about to happen, this new knowledge will help us to predict how the eruption will behave.

"With a rapidly growing population inhabiting the flanks of active volcanoes, understanding the behaviour of lava domes becomes an increasing challenge for volcanologists."

###

The research, published in Nature Geoscience, was funded by the European Research Council (ERC) and involved the Ludwig Maximilian University of Munich, Germany, the University of Padova, the INGV-Rome in Italy and the Kochi Core Center, Japan.

Sarah Stamper | Eurek Alert!
Further information:
http://www.liv.ac.uk

Further reports about: Analysis Environmental composition pressure resistance volcanic volcano

More articles from Earth Sciences:

nachricht 2014 Antarctic Ozone Hole Holds Steady
31.10.2014 | NASA/Goddard Space Flight Center

nachricht NIST 'combs' the atmosphere to measure greenhouse gases
30.10.2014 | National Institute of Standards and Technology (NIST)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Registration Open Now: 18th International ESAFORM Conference on Material Forming

28.10.2014 | Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

 
Latest News

Sculpting solar systems: Magnetic fields seen for first time

31.10.2014 | Physics and Astronomy

Here's Looking At You: Spooky Shadow Play Gives Jupiter a Giant Eye

31.10.2014 | Physics and Astronomy

New research reveals fish are smarter than we thought

31.10.2014 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>