Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New home for an 'evolutionary misfit'

18.08.2014

Worm-like creature with legs and spikes finds its place in the evolutionary tree of life

One of the most bizarre-looking fossils ever found - a worm-like creature with legs, spikes and a head difficult to distinguish from its tail – has found its place in the evolutionary Tree of Life, definitively linking it with a group of modern animals for the first time.


This is a reconstruction of the Burgess Shale animal Hallucigenia sparsa.

Credit: Elyssa Rider

The animal, known as Hallucigenia due to its otherworldly appearance, had been considered an 'evolutionary misfit' as it was not clear how it related to modern animal groups. Researchers from the University of Cambridge have discovered an important link with modern velvet worms, also known as onychophorans, a relatively small group of worm-like animals that live in tropical forests. The results are published in the advance online edition of the journal Nature.

The affinity of Hallucigenia and other contemporary 'legged worms', collectively known as lobopodians, has been very controversial, as a lack of clear characteristics linking them to each other or to modern animals has made it difficult to determine their evolutionary home.

What is more, early interpretations of Hallucigenia, which was first identified in the 1970s, placed it both backwards and upside-down. The spines along the creature's back were originally thought to be legs, its legs were thought to be tentacles along its back, and its head was mistaken for its tail.

Hallucigenia lived approximately 505 million years ago during the Cambrian Explosion, a period of rapid evolution when most major animal groups first appear in the fossil record. These particular fossils come from the Burgess Shale in Canada's Rocky Mountains, one of the richest Cambrian fossil deposits in the world.

Looking like something from science fiction, Hallucigenia had a row of rigid spines along its back, and seven or eight pairs of legs ending in claws. The animals were between five and 35 millimetres in length, and lived on the floor of the Cambrian oceans.

A new study of the creature's claws revealed an organisation very close to those of modern velvet worms, where layers of cuticle (a hard substance similar to fingernails) are stacked one inside the other, like Russian nesting dolls. The same nesting structure can also be seen in the jaws of velvet worms, which are no more than legs modified for chewing.

"It's often thought that modern animal groups arose fully formed during the Cambrian Explosion," said Dr Martin Smith of the University's Department of Earth Sciences, the paper's lead author. "But evolution is a gradual process: today's complex anatomies emerged step by step, one feature at a time. By deciphering 'in-between' fossils like Hallucigenia, we can determine how different animal groups built up their modern body plans."

While Hallucigenia had been suspected to be an ancestor of velvet worms, definitive characteristics linking them together had been hard to come by, and their claws had never been studied in detail. Through analysing both the prehistoric and living creatures, the researchers found that claws were the connection joining them together. Cambrian fossils continue to produce new information on origins of complex animals, and the use of high-end imaging techniques and data on living organisms further allows researchers to untangle the enigmatic evolution of earliest creatures.

"An exciting outcome of this study is that it turns our current understanding of the evolutionary tree of arthropods – the group including spiders, insects and crustaceans – upside down," said Dr Javier Ortega-Hernandez, the paper's co-author. "Most gene-based studies suggest that arthropods and velvet worms are closely related to each other; however, our results indicate that arthropods are actually closer to water bears, or tardigrades, a group of hardy microscopic animals best known for being able to survive the vacuum of space and sub-zero temperatures – leaving velvet worms as distant cousins."

"The peculiar claws of Hallucigenia are a smoking gun that solve a long and heated debate in evolutionary biology, and may even help to decipher other problematic Cambrian critters," said Dr Smith.

Craig Brierley | Eurek Alert!
Further information:
http://www.cam.ac.uk/

Further reports about: Hallucigenia animals arthropods creatures earth sciences fossils spines

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>