Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Global Maps Detail Human-Caused Ocean Acidification

11.11.2014

Oceans Changing in Step with Rising CO2 Emissions

A team of scientists has published the most comprehensive picture yet of how acidity levels vary across the world’s oceans, providing a benchmark for years to come as enormous amounts of human-caused carbon emissions continue to wind up at sea.


In northern winter, the Bering Sea, dividing Alaska and Siberia, becomes the most acidic region on earth (in purple) as shown in this February 2005 acidity map in pH scale. Temperate oceans are less acidic. The equatorial Pacific is left blank due to its high variability around El Niño and La Niña events. (Takahashi)


The saturation state of the mineral aragonite, essential to shell-builders, tends to fall as waters become more acidic. The South Pacific Ocean is heavily oversaturated with respect to aragonite (in red) while the polar oceans (in blue) are less saturated, as shown in this February 2005 map. The pink lines represent approximate polar sea ice edges. (Takahashi)

“We have established a global standard for future changes to be measured,” said Taro Takahashi, a geochemist at Columbia’s Lamont-Doherty Earth Observatory who published the maps with his colleagues in the August issue of the journal Marine Chemistry.

The maps provide a monthly look at how ocean acidity rises and falls by season and geographic location, along with saturation levels of calcium carbonate minerals used by shell-building organisms. The maps use 2005 as a reference year and draw on four decades of measurements by Lamont-Doherty scientists and others.

The oceans have taken up a quarter of the carbon dioxide humans have put in the atmosphere over the last two hundred years. But their help in offsetting global warming has come at a price: the oceans are growing more acidic as they absorb our excess CO2.

To what extent ocean acidification may harm marine life and ecosystems is still unclear, but already signs of stress have appeared in corals, mollusks and other shell-builders living in regions with naturally more acidic water. Since the industrial era began, average surface seawater pH in temperate oceans has fallen from 8.2 to 8.1 by 0.1 pH unit, equal to a 30 percent increase in acid concentration. (A lower pH indicates more acidic conditions.)

The saturation state of the mineral aragonite, essential to shell-builders, tends to fall as waters become more acidic. The South Pacific Ocean is heavily oversaturated with respect to aragonite (in red) while the polar oceans (in blue) are less saturated, as shown in this February 2005 map. The pink lines represent approximate polar sea ice edges. (Takahashi)

Taro Takahashi has spent more than four decades measuring the changing chemistry of the world’s oceans. Here, aboard the R/V Melville, he celebrates after sampling waters near the bottom of the Japan Trench in 1973. (Lamont-Doherty archives)

The vast tropical and temperate oceans, where most coral reefs grow, see the least variation, with pH hovering between 8.05 and 8.15 as temperatures fluctuate in winter and summer. Here, the waters are oversaturated with respect to the mineral aragonite—a substance that shell-building organisms need to thrive.

Ocean pH fluctuates most in the colder waters off Siberia and Alaska, the Pacific Northwest and Antarctica. In spring and summer, massive plankton blooms absorb carbon dioxide in the water, raising pH and causing seawater acidity to fall. In winter, the upwelling of CO2-rich water from the deep ocean causes surface waters to become more acidic. Acidification of the Arctic Ocean in winter causes aragonite levels to fall, slowing the growth of pteropods, planktic snails that feed many predator fish.

The maps reveal that the northern Indian Ocean is at least 10 percent more acidic than the Atlantic and Pacific oceans, which could be due to its unique geography. Cut off from the Arctic Ocean, the chemistry of the northern Indian Ocean is influenced by rivers draining the massive Eurasian continent as well as seasonal monsoon rains.

By analyzing long-term data collected off Iceland, Bermuda, the Canary Islands, Hawaii and the Drake Passage, off the southern tip of South America, Takahashi finds that waters as far north as Iceland and as far south as Antarctica are acidifying at the rate of 5 percent per decade. His estimate corresponds to the amount of CO2 humans are adding to the atmosphere, and is consistent with several recent estimates, including a 2014 study in the journal Oceanography led by Nicholas Bates, research director at the Bermuda Institute of Ocean Sciences.

“This is exactly what we’d expect based on how much CO2 we’ve been putting in the air,” said Rik Wanninkhof, a Miami-based oceanographer with the National Oceanic and Atmospheric Administration (NOAA) who was not involved in the study. “This is an important point for scientists to underscore—these calculations are not magic.”

If the current pace of ocean acidification continues, warm-water corals by 2050 could be living in waters 25 percent more acidic than they are today, said Takahashi. While corals can currently tolerate shifts that big, marine biologists wonder if they can sustain growth at lower pH levels year-round. “In the long run it is the average pH that corals see that matters to their ability to grow and build a coral reef,” said Chris Langdon, a marine biologist at the University of Miami, who was not involved in the study.

Ocean acidification is already having an impact, especially in places where the seasonal upwelling of deep water has made seawater naturally more acidic. In a recent study by researchers at NOAA, more than half of the pteropods sampled off the coast of Washington, Oregon and California showed badly dissolved shells.

Ocean acidification has been linked to fish losing their ability to sniff out predators, and the die-off of baby oysters in hatcheries off Washington and Oregon, where more acidic deep water comes to the surface each spring and summer.

By 2100, ocean acidification could cost the global economy $3 trillion a year in lost revenue from fishing, tourism and intangible ecosystem services, according to a recent United Nations report. The U.S. Government Accountability Office, the watchdog arm of Congress, has reached similar findings and recommended that President Obama create a research and monitoring program dedicated to ocean acidification.

Other authors of the study: Stuart Sutherland, David Chipman (now retired), John Goddard and Cheng Ho, all of Lamont-Doherty; and Timothy Newberger, Colm Sweeney and David Munro, all of University of Colorado, Boulder.


Media Inquiries:
Kim Martineau
kmartine@ldeo.columbia.edu
Office:(845) 365-8708
Cell: (646)-717-0134

Kim Martineau | EurekAlert!
Further information:
http://www.ldeo.columbia.edu/news-events/new-global-maps-detail-human-caused-ocean-acidification

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>