Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Global Maps Detail Human-Caused Ocean Acidification

11.11.2014

Oceans Changing in Step with Rising CO2 Emissions

A team of scientists has published the most comprehensive picture yet of how acidity levels vary across the world’s oceans, providing a benchmark for years to come as enormous amounts of human-caused carbon emissions continue to wind up at sea.


In northern winter, the Bering Sea, dividing Alaska and Siberia, becomes the most acidic region on earth (in purple) as shown in this February 2005 acidity map in pH scale. Temperate oceans are less acidic. The equatorial Pacific is left blank due to its high variability around El Niño and La Niña events. (Takahashi)


The saturation state of the mineral aragonite, essential to shell-builders, tends to fall as waters become more acidic. The South Pacific Ocean is heavily oversaturated with respect to aragonite (in red) while the polar oceans (in blue) are less saturated, as shown in this February 2005 map. The pink lines represent approximate polar sea ice edges. (Takahashi)

“We have established a global standard for future changes to be measured,” said Taro Takahashi, a geochemist at Columbia’s Lamont-Doherty Earth Observatory who published the maps with his colleagues in the August issue of the journal Marine Chemistry.

The maps provide a monthly look at how ocean acidity rises and falls by season and geographic location, along with saturation levels of calcium carbonate minerals used by shell-building organisms. The maps use 2005 as a reference year and draw on four decades of measurements by Lamont-Doherty scientists and others.

The oceans have taken up a quarter of the carbon dioxide humans have put in the atmosphere over the last two hundred years. But their help in offsetting global warming has come at a price: the oceans are growing more acidic as they absorb our excess CO2.

To what extent ocean acidification may harm marine life and ecosystems is still unclear, but already signs of stress have appeared in corals, mollusks and other shell-builders living in regions with naturally more acidic water. Since the industrial era began, average surface seawater pH in temperate oceans has fallen from 8.2 to 8.1 by 0.1 pH unit, equal to a 30 percent increase in acid concentration. (A lower pH indicates more acidic conditions.)

The saturation state of the mineral aragonite, essential to shell-builders, tends to fall as waters become more acidic. The South Pacific Ocean is heavily oversaturated with respect to aragonite (in red) while the polar oceans (in blue) are less saturated, as shown in this February 2005 map. The pink lines represent approximate polar sea ice edges. (Takahashi)

Taro Takahashi has spent more than four decades measuring the changing chemistry of the world’s oceans. Here, aboard the R/V Melville, he celebrates after sampling waters near the bottom of the Japan Trench in 1973. (Lamont-Doherty archives)

The vast tropical and temperate oceans, where most coral reefs grow, see the least variation, with pH hovering between 8.05 and 8.15 as temperatures fluctuate in winter and summer. Here, the waters are oversaturated with respect to the mineral aragonite—a substance that shell-building organisms need to thrive.

Ocean pH fluctuates most in the colder waters off Siberia and Alaska, the Pacific Northwest and Antarctica. In spring and summer, massive plankton blooms absorb carbon dioxide in the water, raising pH and causing seawater acidity to fall. In winter, the upwelling of CO2-rich water from the deep ocean causes surface waters to become more acidic. Acidification of the Arctic Ocean in winter causes aragonite levels to fall, slowing the growth of pteropods, planktic snails that feed many predator fish.

The maps reveal that the northern Indian Ocean is at least 10 percent more acidic than the Atlantic and Pacific oceans, which could be due to its unique geography. Cut off from the Arctic Ocean, the chemistry of the northern Indian Ocean is influenced by rivers draining the massive Eurasian continent as well as seasonal monsoon rains.

By analyzing long-term data collected off Iceland, Bermuda, the Canary Islands, Hawaii and the Drake Passage, off the southern tip of South America, Takahashi finds that waters as far north as Iceland and as far south as Antarctica are acidifying at the rate of 5 percent per decade. His estimate corresponds to the amount of CO2 humans are adding to the atmosphere, and is consistent with several recent estimates, including a 2014 study in the journal Oceanography led by Nicholas Bates, research director at the Bermuda Institute of Ocean Sciences.

“This is exactly what we’d expect based on how much CO2 we’ve been putting in the air,” said Rik Wanninkhof, a Miami-based oceanographer with the National Oceanic and Atmospheric Administration (NOAA) who was not involved in the study. “This is an important point for scientists to underscore—these calculations are not magic.”

If the current pace of ocean acidification continues, warm-water corals by 2050 could be living in waters 25 percent more acidic than they are today, said Takahashi. While corals can currently tolerate shifts that big, marine biologists wonder if they can sustain growth at lower pH levels year-round. “In the long run it is the average pH that corals see that matters to their ability to grow and build a coral reef,” said Chris Langdon, a marine biologist at the University of Miami, who was not involved in the study.

Ocean acidification is already having an impact, especially in places where the seasonal upwelling of deep water has made seawater naturally more acidic. In a recent study by researchers at NOAA, more than half of the pteropods sampled off the coast of Washington, Oregon and California showed badly dissolved shells.

Ocean acidification has been linked to fish losing their ability to sniff out predators, and the die-off of baby oysters in hatcheries off Washington and Oregon, where more acidic deep water comes to the surface each spring and summer.

By 2100, ocean acidification could cost the global economy $3 trillion a year in lost revenue from fishing, tourism and intangible ecosystem services, according to a recent United Nations report. The U.S. Government Accountability Office, the watchdog arm of Congress, has reached similar findings and recommended that President Obama create a research and monitoring program dedicated to ocean acidification.

Other authors of the study: Stuart Sutherland, David Chipman (now retired), John Goddard and Cheng Ho, all of Lamont-Doherty; and Timothy Newberger, Colm Sweeney and David Munro, all of University of Colorado, Boulder.


Media Inquiries:
Kim Martineau
kmartine@ldeo.columbia.edu
Office:(845) 365-8708
Cell: (646)-717-0134

Kim Martineau | EurekAlert!
Further information:
http://www.ldeo.columbia.edu/news-events/new-global-maps-detail-human-caused-ocean-acidification

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>