Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gas-phase compounds form organic particle ingredients

27.02.2014

Scientists made an important step in order to better understand the relationships between vegetation and climate.

So-called extremely low-volatility organic compounds, which are produced by plants, could be detected for the first time during field and laboratory experiments in Finland and Germany. These organic species contribute to the formation of aerosol that can affect climate and air quality, they report in this week's issue of the journal Nature. The results may help to explain discrepancies between observations and theories about how volatile organic compounds produced by vegetation are converted into atmospheric aerosol – especially over forested regions.


This is the Hyytiälä Forestry Field Station in Finland.

Credit: Photo: Juho Aalto


This is a laminar flow reactor from TROPOS.

Credit: Photo: Tilo Arnhold/TROPOS

Forests emit large amounts of volatile organic compounds (VOC). Their reaction products form the so-called secondary organic aerosol. In this case, gases are converted into particles that reflect solar radiation or act as nuclei for cloud droplets. These processes have a major influence on the climate and are therefore of special scientific interest. However, the model calculations have been very inaccurate, as there are still large gaps in our knowledge concerning the role of the compounds emitted by plants during the transition between gaseous and solid state. As long as these processes are poorly understood, it is difficult to give accurate predictions. This uncertainty also affects all climate models.

Large uncertainties do primarily exist regarding the growth of newly formed particles towards cloud nuclei on which water condenses, thus initiating the formation of clouds. The particle growth in the diameter range between about three and one hundred nanometers requires low-volatile organic vapors, as has been speculated. These "extremely low-volatility organic compounds (ELVOC)" have been hardly detected so far and their possible formation pathways are very speculative. Latest progress in the measurement techniques made their detection possible. Until recently, these compounds could not be measured because they are very short-lived. As soon as these molecules collide with a surfaces, they remain adsorbed and cannot be detected in the gas phase by analytical instruments. To prevent this, the ELVOCs are directly ionized under atmospheric conditions in the gas phase, and subsequently transported as an electrically charged ELVOC-molecule into the sensor (mass spectrometer), where the detection takes place. This powerful analytical method using mass spectrometric detection is called CI-APi-TOF (chemical ionization - atmospheric pressure interface time -of-flight mass spectrometry).

The newly released study by scientists from Finland, Germany, the USA and Denmark consists of several parts. The field measurements were carried out at the station of the University of Helsinki in Hyytiäla in southern Finland, which is typical for boreal forests, which cover eight percent of the earth's surface. The main part of the study comprises laboratory investigations performed in a reaction chamber at the Research Center Jülich. The Jülich Plant Atmosphere Chamber (JPAC) is a 1.5-cubic-meter glass chamber under controlled conditions of temperature, humidity and irradiation. "We have focused our efforts on the oxidation of α-pinene, because it accounts for about half of global monoterpene emissions," explains Dr. Mikael Ehn from the University of Helsinki, who is the first author of this study and did the pioneering work for the discovering of ELVOCs. Every forest visitor can recognize these compounds as the typical fir needle smell. "We managed to present the first molecular evidence of a direct and ubiquitous source of ELVOCs arising from the oxidation of monoterpenes and other volatile organic compounds in the gas phase." This produces vapors with relatively large molecules containing many hydrogen atoms as well as approximately the same number of oxygen as carbon atoms. "The results suggest that about 10 percent of the reacting VOC mass is converted tosecondary organic aerosol over the tree tops. Previous estimates were based on a share of less than 5 percent. This shows that the role of ozone (the oxidant of α-pinene and other monoterpenes) has been underestimated. There is still quite large uncertainty in climate models at this point," the lead author states. Mikael Ehn has been working on this study over four years and is glad that the international cooperation in the large team has made it possible not only to detect these new compounds but also to explain the mechanism that leads to the formation.

Measurements in the chemistry laboratory of the Leibniz Institute for Tropospheric Research (TROPOS) in Leipzig have also contributed to this result. The researchers let the needle scent α-pinene react with both "normal" ozone (16O3) and "labeled", heavier ozone (18O3), in order to determine the portion of heavy oxygen atoms (18O) in the formed ELVOCs. "These experiments allowed us a first insight into the formation mechanism of these compounds and provide the basis for a series of further experiments," as Dr. Torsten Berndt from TROPOS explains. Chemists from TROPOS investigate reactions of OH and other radicals since many years. The hydroxyl radical consisting of one hydrogen and one oxygen atom, is one of the most common free radicals in the air and is therefore often referred as the detergent of the atmosphere.

The new findings help to explain a significant part of the organic mass of aerosol particles in the air, which had remained mysterious to the scientists so far. Changes in the ratio of ozone to OH radicals could be an additional anthropogenic influence on the atmosphere. The formation of the new ELVOCs influences cloud formation and hence the climate, the scientists conclude. The new findings will help to better estimate different land use effects and especially the effects of vegetation on the climate . As a result, the climate models can be improved, which had not sufficiently taken into account the growth of nanoparticles caused by these compounds produced in boreal regions.

Publication: Mikael Ehn, Joel A. Thornton, Einhard Kleist, Mikko Sipila, Heikki Junninen, Iida Pullinen, Monika Springer, Florian Rubach, Ralf Tillmann, Ben Lee, Felipe Lopez-Hilfiker, Stefanie Andres, Ismail-Hakki Acir, Matti Rissanen, Tuija Jokinen, Siegfried Schobesberger, Juha Kangasluoma, Jenni Kontkanen, Tuomo Nieminen, Theo Kurtén, Lasse B. Nielsen, Solvejg Jørgensen, Henrik G. Kjaergaard, Manjula Canagaratna, Miikka Dal Maso, Torsten Berndt, Tuukka Petäjä, Andreas Wahner, Veli-Matti Kerminen, Markku Kulmala, Douglas R. Worsnop, Jürgen Wildt & Thomas F. Mentel (2014): A large source of low-volatility secondary organic aerosol. Nature, 506, 476-479. 27 February 2014. http://www.nature.com/doifinder/10.1038/nature13032

The research was funded by the Emil Aaltonen foundation, the US Department of Energy Office of Science, the European Research Council (ATMNUCLE), the European Commission (PEGASOS) and the Academy of Finland Center of Excellence.

Further information:
Dr. Mikael Kristian Ehn (en. + fi.)
University of Helsinki
https://tuhat.halvi.helsinki.fi/portal/en/persons/mikael-kristian-ehn%280f9f7088-93e0-457a-863c-969037a64ebf%29.html
and
Dr. Torsten Berndt, Prof. Hartmut Herrmann
Leibniz Institute for Tropospheric Research (TROPOS)
phone +49-341-2717-7032, -7024
http://www.tropos.de/en/institute/about-us/employees/
http://www.tropos.de/en/institute/departments/chemistry/
or
Tilo Arnhold, TROPOS Public Relations
phone +49-341-2717-7060
http://www.tropos.de/en/institute/about-us/employees/

links:

Centre of Excellence in Atmospheric Science – From Molecular and Biological processes to The Global Climate

SMEAR II station of the University of Helsinki in Hyytiäla

Jülich Plant Atmosphere Chamber (JPAC)

Laboratory investigations on particle formation and early growth at TROPOS: http://www.tropos.de/en/research/atmospheric-aerosols/process-studies-on-small-spacial-and-temporal-scales/secondary-aerosol-formation/new-particle-formation-nucleation/laboratory-investigations-on-particle-formation-and-early-growth/

older press releases:

Plants moderate climate warming (Press release, 28-Apr-2013)

in German: http://www.tropos.de/aktuelles/pressemitteilungen/details/pflanzen-bremsen-die-klimaerwaermung/

A new atmospherically relevant oxidant of sulphur dioxide - Nature (press release, 08 August 2012): http://www.colorado.edu/news/releases/2012/08/08/cu-led-team-discovers-new-atmospheric-compound-tied-climate-change-and

in German: http://www.tropos.de/aktuelles/pressemitteilungen/details/nature-neues-oxidationsmittel-der-atmosphaere-entdeckt-das-luftschad/

Tilo Arnhold | TROPOS

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>