Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gas-phase compounds form organic particle ingredients

27.02.2014

Scientists made an important step in order to better understand the relationships between vegetation and climate.

So-called extremely low-volatility organic compounds, which are produced by plants, could be detected for the first time during field and laboratory experiments in Finland and Germany. These organic species contribute to the formation of aerosol that can affect climate and air quality, they report in this week's issue of the journal Nature. The results may help to explain discrepancies between observations and theories about how volatile organic compounds produced by vegetation are converted into atmospheric aerosol – especially over forested regions.


This is the Hyytiälä Forestry Field Station in Finland.

Credit: Photo: Juho Aalto


This is a laminar flow reactor from TROPOS.

Credit: Photo: Tilo Arnhold/TROPOS

Forests emit large amounts of volatile organic compounds (VOC). Their reaction products form the so-called secondary organic aerosol. In this case, gases are converted into particles that reflect solar radiation or act as nuclei for cloud droplets. These processes have a major influence on the climate and are therefore of special scientific interest. However, the model calculations have been very inaccurate, as there are still large gaps in our knowledge concerning the role of the compounds emitted by plants during the transition between gaseous and solid state. As long as these processes are poorly understood, it is difficult to give accurate predictions. This uncertainty also affects all climate models.

Large uncertainties do primarily exist regarding the growth of newly formed particles towards cloud nuclei on which water condenses, thus initiating the formation of clouds. The particle growth in the diameter range between about three and one hundred nanometers requires low-volatile organic vapors, as has been speculated. These "extremely low-volatility organic compounds (ELVOC)" have been hardly detected so far and their possible formation pathways are very speculative. Latest progress in the measurement techniques made their detection possible. Until recently, these compounds could not be measured because they are very short-lived. As soon as these molecules collide with a surfaces, they remain adsorbed and cannot be detected in the gas phase by analytical instruments. To prevent this, the ELVOCs are directly ionized under atmospheric conditions in the gas phase, and subsequently transported as an electrically charged ELVOC-molecule into the sensor (mass spectrometer), where the detection takes place. This powerful analytical method using mass spectrometric detection is called CI-APi-TOF (chemical ionization - atmospheric pressure interface time -of-flight mass spectrometry).

The newly released study by scientists from Finland, Germany, the USA and Denmark consists of several parts. The field measurements were carried out at the station of the University of Helsinki in Hyytiäla in southern Finland, which is typical for boreal forests, which cover eight percent of the earth's surface. The main part of the study comprises laboratory investigations performed in a reaction chamber at the Research Center Jülich. The Jülich Plant Atmosphere Chamber (JPAC) is a 1.5-cubic-meter glass chamber under controlled conditions of temperature, humidity and irradiation. "We have focused our efforts on the oxidation of α-pinene, because it accounts for about half of global monoterpene emissions," explains Dr. Mikael Ehn from the University of Helsinki, who is the first author of this study and did the pioneering work for the discovering of ELVOCs. Every forest visitor can recognize these compounds as the typical fir needle smell. "We managed to present the first molecular evidence of a direct and ubiquitous source of ELVOCs arising from the oxidation of monoterpenes and other volatile organic compounds in the gas phase." This produces vapors with relatively large molecules containing many hydrogen atoms as well as approximately the same number of oxygen as carbon atoms. "The results suggest that about 10 percent of the reacting VOC mass is converted tosecondary organic aerosol over the tree tops. Previous estimates were based on a share of less than 5 percent. This shows that the role of ozone (the oxidant of α-pinene and other monoterpenes) has been underestimated. There is still quite large uncertainty in climate models at this point," the lead author states. Mikael Ehn has been working on this study over four years and is glad that the international cooperation in the large team has made it possible not only to detect these new compounds but also to explain the mechanism that leads to the formation.

Measurements in the chemistry laboratory of the Leibniz Institute for Tropospheric Research (TROPOS) in Leipzig have also contributed to this result. The researchers let the needle scent α-pinene react with both "normal" ozone (16O3) and "labeled", heavier ozone (18O3), in order to determine the portion of heavy oxygen atoms (18O) in the formed ELVOCs. "These experiments allowed us a first insight into the formation mechanism of these compounds and provide the basis for a series of further experiments," as Dr. Torsten Berndt from TROPOS explains. Chemists from TROPOS investigate reactions of OH and other radicals since many years. The hydroxyl radical consisting of one hydrogen and one oxygen atom, is one of the most common free radicals in the air and is therefore often referred as the detergent of the atmosphere.

The new findings help to explain a significant part of the organic mass of aerosol particles in the air, which had remained mysterious to the scientists so far. Changes in the ratio of ozone to OH radicals could be an additional anthropogenic influence on the atmosphere. The formation of the new ELVOCs influences cloud formation and hence the climate, the scientists conclude. The new findings will help to better estimate different land use effects and especially the effects of vegetation on the climate . As a result, the climate models can be improved, which had not sufficiently taken into account the growth of nanoparticles caused by these compounds produced in boreal regions.

Publication: Mikael Ehn, Joel A. Thornton, Einhard Kleist, Mikko Sipila, Heikki Junninen, Iida Pullinen, Monika Springer, Florian Rubach, Ralf Tillmann, Ben Lee, Felipe Lopez-Hilfiker, Stefanie Andres, Ismail-Hakki Acir, Matti Rissanen, Tuija Jokinen, Siegfried Schobesberger, Juha Kangasluoma, Jenni Kontkanen, Tuomo Nieminen, Theo Kurtén, Lasse B. Nielsen, Solvejg Jørgensen, Henrik G. Kjaergaard, Manjula Canagaratna, Miikka Dal Maso, Torsten Berndt, Tuukka Petäjä, Andreas Wahner, Veli-Matti Kerminen, Markku Kulmala, Douglas R. Worsnop, Jürgen Wildt & Thomas F. Mentel (2014): A large source of low-volatility secondary organic aerosol. Nature, 506, 476-479. 27 February 2014. http://www.nature.com/doifinder/10.1038/nature13032

The research was funded by the Emil Aaltonen foundation, the US Department of Energy Office of Science, the European Research Council (ATMNUCLE), the European Commission (PEGASOS) and the Academy of Finland Center of Excellence.

Further information:
Dr. Mikael Kristian Ehn (en. + fi.)
University of Helsinki
https://tuhat.halvi.helsinki.fi/portal/en/persons/mikael-kristian-ehn%280f9f7088-93e0-457a-863c-969037a64ebf%29.html
and
Dr. Torsten Berndt, Prof. Hartmut Herrmann
Leibniz Institute for Tropospheric Research (TROPOS)
phone +49-341-2717-7032, -7024
http://www.tropos.de/en/institute/about-us/employees/
http://www.tropos.de/en/institute/departments/chemistry/
or
Tilo Arnhold, TROPOS Public Relations
phone +49-341-2717-7060
http://www.tropos.de/en/institute/about-us/employees/

links:

Centre of Excellence in Atmospheric Science – From Molecular and Biological processes to The Global Climate

SMEAR II station of the University of Helsinki in Hyytiäla

Jülich Plant Atmosphere Chamber (JPAC)

Laboratory investigations on particle formation and early growth at TROPOS: http://www.tropos.de/en/research/atmospheric-aerosols/process-studies-on-small-spacial-and-temporal-scales/secondary-aerosol-formation/new-particle-formation-nucleation/laboratory-investigations-on-particle-formation-and-early-growth/

older press releases:

Plants moderate climate warming (Press release, 28-Apr-2013)

in German: http://www.tropos.de/aktuelles/pressemitteilungen/details/pflanzen-bremsen-die-klimaerwaermung/

A new atmospherically relevant oxidant of sulphur dioxide - Nature (press release, 08 August 2012): http://www.colorado.edu/news/releases/2012/08/08/cu-led-team-discovers-new-atmospheric-compound-tied-climate-change-and

in German: http://www.tropos.de/aktuelles/pressemitteilungen/details/nature-neues-oxidationsmittel-der-atmosphaere-entdeckt-das-luftschad/

Tilo Arnhold | TROPOS

More articles from Earth Sciences:

nachricht New study reveals where MH370 debris more likely to be found
27.07.2016 | European Geosciences Union

nachricht Exploring one of the largest salt flats in the world
27.07.2016 | University of Massachusetts at Amherst

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>