Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gas-phase compounds form organic particle ingredients

27.02.2014

Scientists made an important step in order to better understand the relationships between vegetation and climate.

So-called extremely low-volatility organic compounds, which are produced by plants, could be detected for the first time during field and laboratory experiments in Finland and Germany. These organic species contribute to the formation of aerosol that can affect climate and air quality, they report in this week's issue of the journal Nature. The results may help to explain discrepancies between observations and theories about how volatile organic compounds produced by vegetation are converted into atmospheric aerosol – especially over forested regions.


This is the Hyytiälä Forestry Field Station in Finland.

Credit: Photo: Juho Aalto


This is a laminar flow reactor from TROPOS.

Credit: Photo: Tilo Arnhold/TROPOS

Forests emit large amounts of volatile organic compounds (VOC). Their reaction products form the so-called secondary organic aerosol. In this case, gases are converted into particles that reflect solar radiation or act as nuclei for cloud droplets. These processes have a major influence on the climate and are therefore of special scientific interest. However, the model calculations have been very inaccurate, as there are still large gaps in our knowledge concerning the role of the compounds emitted by plants during the transition between gaseous and solid state. As long as these processes are poorly understood, it is difficult to give accurate predictions. This uncertainty also affects all climate models.

Large uncertainties do primarily exist regarding the growth of newly formed particles towards cloud nuclei on which water condenses, thus initiating the formation of clouds. The particle growth in the diameter range between about three and one hundred nanometers requires low-volatile organic vapors, as has been speculated. These "extremely low-volatility organic compounds (ELVOC)" have been hardly detected so far and their possible formation pathways are very speculative. Latest progress in the measurement techniques made their detection possible. Until recently, these compounds could not be measured because they are very short-lived. As soon as these molecules collide with a surfaces, they remain adsorbed and cannot be detected in the gas phase by analytical instruments. To prevent this, the ELVOCs are directly ionized under atmospheric conditions in the gas phase, and subsequently transported as an electrically charged ELVOC-molecule into the sensor (mass spectrometer), where the detection takes place. This powerful analytical method using mass spectrometric detection is called CI-APi-TOF (chemical ionization - atmospheric pressure interface time -of-flight mass spectrometry).

The newly released study by scientists from Finland, Germany, the USA and Denmark consists of several parts. The field measurements were carried out at the station of the University of Helsinki in Hyytiäla in southern Finland, which is typical for boreal forests, which cover eight percent of the earth's surface. The main part of the study comprises laboratory investigations performed in a reaction chamber at the Research Center Jülich. The Jülich Plant Atmosphere Chamber (JPAC) is a 1.5-cubic-meter glass chamber under controlled conditions of temperature, humidity and irradiation. "We have focused our efforts on the oxidation of α-pinene, because it accounts for about half of global monoterpene emissions," explains Dr. Mikael Ehn from the University of Helsinki, who is the first author of this study and did the pioneering work for the discovering of ELVOCs. Every forest visitor can recognize these compounds as the typical fir needle smell. "We managed to present the first molecular evidence of a direct and ubiquitous source of ELVOCs arising from the oxidation of monoterpenes and other volatile organic compounds in the gas phase." This produces vapors with relatively large molecules containing many hydrogen atoms as well as approximately the same number of oxygen as carbon atoms. "The results suggest that about 10 percent of the reacting VOC mass is converted tosecondary organic aerosol over the tree tops. Previous estimates were based on a share of less than 5 percent. This shows that the role of ozone (the oxidant of α-pinene and other monoterpenes) has been underestimated. There is still quite large uncertainty in climate models at this point," the lead author states. Mikael Ehn has been working on this study over four years and is glad that the international cooperation in the large team has made it possible not only to detect these new compounds but also to explain the mechanism that leads to the formation.

Measurements in the chemistry laboratory of the Leibniz Institute for Tropospheric Research (TROPOS) in Leipzig have also contributed to this result. The researchers let the needle scent α-pinene react with both "normal" ozone (16O3) and "labeled", heavier ozone (18O3), in order to determine the portion of heavy oxygen atoms (18O) in the formed ELVOCs. "These experiments allowed us a first insight into the formation mechanism of these compounds and provide the basis for a series of further experiments," as Dr. Torsten Berndt from TROPOS explains. Chemists from TROPOS investigate reactions of OH and other radicals since many years. The hydroxyl radical consisting of one hydrogen and one oxygen atom, is one of the most common free radicals in the air and is therefore often referred as the detergent of the atmosphere.

The new findings help to explain a significant part of the organic mass of aerosol particles in the air, which had remained mysterious to the scientists so far. Changes in the ratio of ozone to OH radicals could be an additional anthropogenic influence on the atmosphere. The formation of the new ELVOCs influences cloud formation and hence the climate, the scientists conclude. The new findings will help to better estimate different land use effects and especially the effects of vegetation on the climate . As a result, the climate models can be improved, which had not sufficiently taken into account the growth of nanoparticles caused by these compounds produced in boreal regions.

Publication: Mikael Ehn, Joel A. Thornton, Einhard Kleist, Mikko Sipila, Heikki Junninen, Iida Pullinen, Monika Springer, Florian Rubach, Ralf Tillmann, Ben Lee, Felipe Lopez-Hilfiker, Stefanie Andres, Ismail-Hakki Acir, Matti Rissanen, Tuija Jokinen, Siegfried Schobesberger, Juha Kangasluoma, Jenni Kontkanen, Tuomo Nieminen, Theo Kurtén, Lasse B. Nielsen, Solvejg Jørgensen, Henrik G. Kjaergaard, Manjula Canagaratna, Miikka Dal Maso, Torsten Berndt, Tuukka Petäjä, Andreas Wahner, Veli-Matti Kerminen, Markku Kulmala, Douglas R. Worsnop, Jürgen Wildt & Thomas F. Mentel (2014): A large source of low-volatility secondary organic aerosol. Nature, 506, 476-479. 27 February 2014. http://www.nature.com/doifinder/10.1038/nature13032

The research was funded by the Emil Aaltonen foundation, the US Department of Energy Office of Science, the European Research Council (ATMNUCLE), the European Commission (PEGASOS) and the Academy of Finland Center of Excellence.

Further information:
Dr. Mikael Kristian Ehn (en. + fi.)
University of Helsinki
https://tuhat.halvi.helsinki.fi/portal/en/persons/mikael-kristian-ehn%280f9f7088-93e0-457a-863c-969037a64ebf%29.html
and
Dr. Torsten Berndt, Prof. Hartmut Herrmann
Leibniz Institute for Tropospheric Research (TROPOS)
phone +49-341-2717-7032, -7024
http://www.tropos.de/en/institute/about-us/employees/
http://www.tropos.de/en/institute/departments/chemistry/
or
Tilo Arnhold, TROPOS Public Relations
phone +49-341-2717-7060
http://www.tropos.de/en/institute/about-us/employees/

links:

Centre of Excellence in Atmospheric Science – From Molecular and Biological processes to The Global Climate

SMEAR II station of the University of Helsinki in Hyytiäla

Jülich Plant Atmosphere Chamber (JPAC)

Laboratory investigations on particle formation and early growth at TROPOS: http://www.tropos.de/en/research/atmospheric-aerosols/process-studies-on-small-spacial-and-temporal-scales/secondary-aerosol-formation/new-particle-formation-nucleation/laboratory-investigations-on-particle-formation-and-early-growth/

older press releases:

Plants moderate climate warming (Press release, 28-Apr-2013)

in German: http://www.tropos.de/aktuelles/pressemitteilungen/details/pflanzen-bremsen-die-klimaerwaermung/

A new atmospherically relevant oxidant of sulphur dioxide - Nature (press release, 08 August 2012): http://www.colorado.edu/news/releases/2012/08/08/cu-led-team-discovers-new-atmospheric-compound-tied-climate-change-and

in German: http://www.tropos.de/aktuelles/pressemitteilungen/details/nature-neues-oxidationsmittel-der-atmosphaere-entdeckt-das-luftschad/

Tilo Arnhold | TROPOS

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>