Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fractal-like concentrating solar power receivers are better at absorbing sunlight

26.10.2017

Sandia National Laboratories engineers have developed new fractal-like, concentrating solar power receivers for small- to medium-scale use that are up to 20 percent more effective at absorbing sunlight than current technology.

The receivers were designed and studied as part of a Laboratory Directed Research and Development project and are also being applied to Sandia's work for the Solar Energy Research Institute for India and the United States, or SERIIUS.


Year-round Sandia National Laboratories intern Jesus Ortega inspects one of the new bladed receivers at Sandia's National Solar Thermal Testing Facility.

Photo by Randy Montoya

SERIIUS is a five-year project co-led by the Indian Institute of Science and the National Renewable Energy Laboratory, sponsored by the U.S. Department of Energy and the government of India, that aims to develop and improve cost effective solar technology for both countries by addressing the barriers and challenges of each market. Sandia has led the group's research in concentrating solar power, focusing on scalable systems.

While most concentrating solar power facilities throughout the world are large, Sandia engineer Cliff Ho says India is interested in developing 1 megawatt or smaller facilities that could provide the appropriate amount of power for a small village or community. Improving the efficiency of these smaller receiver designs is a key step toward making that goal a reality.

Sandia engineers developed and tested the new receivers at the National Solar Thermal Testing Facility, studying their ability to withstand high temperatures and pressures while absorbing sunlight as heat that can be stored or transferred to a power cycle to generate electricity. At Sandia's facility, rows of mirror-like heliostats are aimed at a tall building with a central receiver installed at the top.

The heliostats reflect and concentrate the sunlight on the receiver, which absorbs the sunlight's heat and transfers it to gas flowing through the receiver's paneling. The gas can then be used in a conventional power plant cycle to produce electricity or used with a storage system to be saved for on-demand electricity production when the sun is not shining.

Trapping and absorbing reflected light

Conventional receiver designs usually feature a flat panel of tubes or tubes arranged in a cylinder. These designs can absorb about 80 to 90 percent of the concentrated sunlight directed at them when considering reflections and heat loss, but Ho said design improvements to make the receivers even more efficient are needed to help reduce the cost of concentrating solar power and improve scalability.

"When light is reflected off of a flat surface, it's gone," said Ho. "On a flat receiver design, 5 percent or more of the concentrated sunlight reflects away. So we configured the panels of tubes in a radial or louvered pattern that traps the light at different scales. We wanted the light to reflect, and then reflect again toward the interior of the receiver and get absorbed, sort of like the walls of a sound-proof room."

Previous research on making solar receivers more efficient has focused on special coatings that are applied to the receiver. However, many of these coatings are susceptible to breaking down over time, which reduces both the ability of the receiver to absorb sunlight and the potential lifetime of the solar receiver itself while increasing costs due to reapplication and repair. Sandia's new fractal-like receiver designs have increased solar absorption efficiency without the need for special coatings.

Ho and the research team developed and tested multiple prototype fractal-like receiver designs scaled in size to work at small- and medium-scale concentrating solar facilities and found the designs that work best for each application.

"India has different market drivers than the U.S.," Ho said. "The competition for renewable energy there is diesel generators, which create a lot of pollution and are extremely expensive. It gives us a little more flexibility to create a smaller concentrating solar power system that will work for their needs."

Testing the first 3-D 'printed' solar receivers

The team pioneered the use of an additive manufacturing technique called powder-bed fusion to print their small-scale receiver designs from Iconel 718, a high-temperature nickel alloy. Ho said this novel printing technique provided a cost-effective way to test multiple fractal designs at a small scale and could be used in the future to print entire sections of larger solar receivers.

"Additive manufacturing enabled us to generate complex geometries for the receiver tubes in a small-scale prototype," Ho said. "Fabricating these complex geometries using traditional methods such as extrusion, casting or welding would have been difficult."

The new designs work with conventional heat-transfer fluids for concentrating solar power, including molten salts and steam, but they can also use other media for heat transfer and storage.

Sandia is evaluating the receivers' performance with different gases by flowing air, carbon dioxide and helium through the receiver tubes with the ultimate goal of pairing the new receiver designs with supercritical carbon dioxide Brayton cycles. The term "supercritical" describes the semi-liquid state of carbon dioxide when it is heated above its normal critical temperature and pressure. A Brayton cycle functions by using the hot, pressurized supercritical carbon dioxide to spin a turbine, much like a jet engine, which spins a generator for electricity production.

Ho said both the U.S. and India are interested in pursuing supercritical carbon dioxide to develop the next generation of concentrating solar power technology because it can reach greater efficiencies with smaller footprints.

"The goal of concentrating solar power and SERIIUS is to develop efficient, cost-effective solar-driven electricity production with energy storage," Ho said. "The use of a solarized supercritical carbon-dioxide Brayton cycle would increase efficiencies, reduce space requirements and reduce costs associated with current large-scale concentrating solar power systems."

The smaller footprint and cost would help enable the possibility of small-scale (in the 1-10 megawatt range) supercritical carbon dioxide Brayton cycle-based concentrating solar power plants, making concentrating solar power more competitive with other types of renewable energy.

###

Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.

Sandia news media contact: Kristen Meub, klmeub@sandia.gov, 505-845-7215.

Media Contact

Kristen Meub
klmeub@sandia.gov
505-845-7215

 @SandiaLabs

http://www.sandia.gov 

Kristen Meub | EurekAlert!

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>