Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New airborne GPS technology for weather conditions takes flight


First demonstration captures key meteorological data, offers potential of better hurricane forecasting 

GPS technology has broadly advanced science and society’s ability to pinpoint locations and motion, from driving directions to tracking ground motions during earthquakes. A new technique stands to improve weather models and hurricane forecasting by detecting precise conditions in the atmosphere through a new GPS system aboard airplanes.

A new GPS system aboard airplanes could improve weather models and hurricane forecasting by detecting precise conditions in the atmosphere. “GISMOS” (GNSS [Global Navigation Satellite System] Instrument System for Multistatic and Occultation Sensing) communicates with satellites to define details of the atmosphere.

Credit: Scripps Institution of Oceanography

The first demonstration of the technique, reported this month in the American Geophysical Union journal Geophysical Research Letters, is bringing the project’s leaders closer to a goal of broadly implementing the technology in the near future on commercial aircraft.

Current measurement systems that use GPS satellite signals as a source to probe the atmosphere rely on GPS receivers that are fixed to the ground and can’t measure over the ocean, or they rely on GPS receivers that are also on satellites that are expensive to launch and only occasionally measure in the regions near storms.

The new system, used by geophysicist Jennifer Haase of the Scripps Institution of Oceanography in La Jolla, Calif., and her colleagues, captures detailed meteorological readings at different elevations in targeted areas of interest, such as where hurricanes might develop over the Atlantic Ocean.

“This field campaign demonstrated the potential for creating an entirely new operational atmospheric observing system for precise moisture profiling from commercial aircraft,” said Haase. “Having dense, detailed information about the vertical moisture distribution close to the storms is an important advancement, so if you put this information into a weather model it will actually have an impact and improve the forecast.”

“Satellite-based measurements are now regularly used for weather forecasting and have a big impact, but airplanes can go beyond satellites in making observations that are targeted right where you want them,” noted Eric DeWeaver, program director in the National Science Foundation’s (NSF) Division of Atmospheric and Geospace Sciences, which funded the research.

The paper details a 2010 flight campaign aboard NSF aircraft and subsequent data analysis that demonstrated for the first time that atmospheric information could be captured by an airborne GPS device. The instrumentation, which the scientists labeled “GISMOS” (GNSS [Global Navigation Satellite System] Instrument System for Multistatic and Occultation Sensing), increased the number of atmospheric profiles for studying the evolution of tropical storms by more than 50 percent.

“We’re looking at how moisture evolves so when we see tropical waves moving across the Atlantic, we can learn more about which one is going to turn into a hurricane,” said Haase. “So being able to look at what happens in these events at the early stages will give us a lot longer lead time for hurricane warnings.”

“This is another case where the effective use of GPS has the potential to improve the forecast and therefore save lives,” said Richard Anthes, president emeritus of the University Corporation for Atmospheric Research, which currently runs the satellite based GPS measurement system called COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate).

While the current GISMOS design occupies a refrigerator’s worth of space, Haase and her colleagues are working to miniaturize the technology to shoe box size. From there, the system can more feasibly fit onto commercial aircraft, with hundreds of daily flights and a potential flood of new atmospheric data to greatly improve hurricane forecasting and weather models.

The technology also could improve interpretation of long-term climate models by advancing scientists’ understanding of factors such as the moisture conditions that favor hurricane development.


“First results from an airborne GPS radio occultation system for atmospheric profiling”

J. S. Haase: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA;

B. J. Murphy and P. Muradyan: Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA;

F. G. Nievinski: Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, Presidente Prudente, Brazil;

K. M. Larson: Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA;

J. L. Garrison and K.-N. Wang: Department of Aeronautics and Astronautics Engineering, Purdue University, West Lafayette, Indiana, USA.

Contact information for the authors:
Jennifer Haase, +1 (858) 534-8771,

AGU Contact:
Nanci Bompey
+1 (202) 777-7524

Scripps Contact:
Mario Aguilera or Robert Monroe
+1 (858) 534-3624

Peter Weiss | American Geophysical Union
Further information:

Further reports about: Atmospheric Engineering GPS Geophysical airborne moisture satellite storms

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>