Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New airborne GPS technology for weather conditions takes flight

18.03.2014

First demonstration captures key meteorological data, offers potential of better hurricane forecasting 

GPS technology has broadly advanced science and society’s ability to pinpoint locations and motion, from driving directions to tracking ground motions during earthquakes. A new technique stands to improve weather models and hurricane forecasting by detecting precise conditions in the atmosphere through a new GPS system aboard airplanes.


A new GPS system aboard airplanes could improve weather models and hurricane forecasting by detecting precise conditions in the atmosphere. “GISMOS” (GNSS [Global Navigation Satellite System] Instrument System for Multistatic and Occultation Sensing) communicates with satellites to define details of the atmosphere.

Credit: Scripps Institution of Oceanography

The first demonstration of the technique, reported this month in the American Geophysical Union journal Geophysical Research Letters, is bringing the project’s leaders closer to a goal of broadly implementing the technology in the near future on commercial aircraft.

Current measurement systems that use GPS satellite signals as a source to probe the atmosphere rely on GPS receivers that are fixed to the ground and can’t measure over the ocean, or they rely on GPS receivers that are also on satellites that are expensive to launch and only occasionally measure in the regions near storms.

The new system, used by geophysicist Jennifer Haase of the Scripps Institution of Oceanography in La Jolla, Calif., and her colleagues, captures detailed meteorological readings at different elevations in targeted areas of interest, such as where hurricanes might develop over the Atlantic Ocean.

“This field campaign demonstrated the potential for creating an entirely new operational atmospheric observing system for precise moisture profiling from commercial aircraft,” said Haase. “Having dense, detailed information about the vertical moisture distribution close to the storms is an important advancement, so if you put this information into a weather model it will actually have an impact and improve the forecast.”

“Satellite-based measurements are now regularly used for weather forecasting and have a big impact, but airplanes can go beyond satellites in making observations that are targeted right where you want them,” noted Eric DeWeaver, program director in the National Science Foundation’s (NSF) Division of Atmospheric and Geospace Sciences, which funded the research.

The paper details a 2010 flight campaign aboard NSF aircraft and subsequent data analysis that demonstrated for the first time that atmospheric information could be captured by an airborne GPS device. The instrumentation, which the scientists labeled “GISMOS” (GNSS [Global Navigation Satellite System] Instrument System for Multistatic and Occultation Sensing), increased the number of atmospheric profiles for studying the evolution of tropical storms by more than 50 percent.

“We’re looking at how moisture evolves so when we see tropical waves moving across the Atlantic, we can learn more about which one is going to turn into a hurricane,” said Haase. “So being able to look at what happens in these events at the early stages will give us a lot longer lead time for hurricane warnings.”

“This is another case where the effective use of GPS has the potential to improve the forecast and therefore save lives,” said Richard Anthes, president emeritus of the University Corporation for Atmospheric Research, which currently runs the satellite based GPS measurement system called COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate).

While the current GISMOS design occupies a refrigerator’s worth of space, Haase and her colleagues are working to miniaturize the technology to shoe box size. From there, the system can more feasibly fit onto commercial aircraft, with hundreds of daily flights and a potential flood of new atmospheric data to greatly improve hurricane forecasting and weather models.

The technology also could improve interpretation of long-term climate models by advancing scientists’ understanding of factors such as the moisture conditions that favor hurricane development.

Title

“First results from an airborne GPS radio occultation system for atmospheric profiling”

Authors:
J. S. Haase: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA;

B. J. Murphy and P. Muradyan: Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA;

F. G. Nievinski: Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, Presidente Prudente, Brazil;

K. M. Larson: Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA;

J. L. Garrison and K.-N. Wang: Department of Aeronautics and Astronautics Engineering, Purdue University, West Lafayette, Indiana, USA.

Contact information for the authors:
Jennifer Haase, +1 (858) 534-8771, jhaase@ucsd.edu

AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

Scripps Contact:
Mario Aguilera or Robert Monroe
+1 (858) 534-3624
scrippsnews@ucsd.edu

Peter Weiss | American Geophysical Union
Further information:
http://news.agu.org/press-release/new-airborne-gps-technology-for-weather-conditions-takes-flight/

Further reports about: Atmospheric Engineering GPS Geophysical airborne moisture satellite storms

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>