Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons, electrons and theory reveal secrets of natural gas reserves

29.10.2013
Gas and oil deposits in shale have no place to hide from an Oak Ridge National Laboratory technique that provides an inside look at pores and reveals structural information potentially vital to the nation’s energy needs.

The research by scientists at the Department of Energy laboratory could clear the path to the more efficient extraction of gas and oil from shale, environmentally benign and efficient energy production from coal and perhaps viable carbon dioxide sequestration technologies, according to Yuri Melnichenko, an instrument scientist at ORNL’s High Flux Isotope Reactor.


Scanning electron microscope image illustrating mineralogy and texture of unconventional gas reservoir. Note that nanoporosity is not resolvable with this image. SANS and USANS analysis is required to quantify pore size distribution and interconnectivity.

Melnichenko’s broader work was emboldened by a collaboration with James Morris and Nidia Gallego, lead authors of a paper recently published in Journal of Materials Chemistry A and members of ORNL’s Materials Science and Technology Division.

Researchers were able to describe a small-angle neutron scattering technique that, combined with electron microscopy and theory, can be used to examine the function of pore sizes.

Using their technique at the General Purpose SANS instrument at the High Flux Isotope Reactor, scientists showed there is significantly higher local structural order than previously believed in nanoporous carbons. This is important because it allows scientists to develop modeling methods based on local structure of carbon atoms. Researchers also probed distribution of adsorbed gas molecules at unprecedented smaller length scales, allowing them to devise models of the pores.

“We have recently developed efficient approaches to predict the effect of pore size on adsorption,” Morris said. “However, these predictions need verification – and the recent small-angle neutron experiments are ideal for this. The experiments also beg for further calculations, so there is much to be done.”

While traditional methods provide general information about adsorption averaged over an entire sample, they do not provide insight into how pores of different sizes contribute to the total adsorption capacity of a material. Unlike absorption, a process involving the uptake of a gas or liquid in some bulk porous material, adsorption involves the adhesion of atoms, ions or molecules to a surface.

This research, in conjunction with previous work, allows scientists to analyze two-dimensional images to understand how local structures can affect the accessibility of shale pores to natural gas.

“Combined with atomic-level calculations, we demonstrated that local defects in the porous structure observed by microscopy provide stronger gas binding and facilitate its condensation into liquid in pores of optimal sub-nanometer size,” Melnichenko said. “Our method provides a reliable tool for probing properties of sub- and super-critical fluids in natural and engineered porous materials with different structural properties.

“This is a crucial step toward predicting and designing materials with enhanced gas adsorption properties.”

Together, the application of neutron scattering, electron microscopy and theory can lead to new design concepts for building novel nanoporous materials with properties tailored for the environment and energy storage-related technologies. These include capture and sequestration of man-made greenhouse gases, hydrogen storage, membrane gas separation, environmental remediation and catalysis.

Other authors of the paper, titled “Modern approaches to studying gas adsorption in nanoporous carbons,” are Cristian Contescu, Matthew Chisholm, Valentino Cooper, Lilin He, Yungok Ihm, Eugene Mamontov, Raina Olsen, Stephen Pennycook, Matthew Stone and Hongxin Zhang. The research, funded by DOE’s Office of Basic Energy Sciences, utilized the following DOE Office of Science user facilities:

ORNL’s Spallation Neutron Source (http://neutrons.ornl.gov/faciliities/SNS/) is a one-of-a-kind research facility that provides the most intense pulsed neutron beams in the world for scientific research and industrial development.

HFIR (http://neutrons.ornl.gov/facilities/HFIR/) at ORNL is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source.

The ShaRE User Facility (http://web.ornl.gov/sci/share/) makes available state-of-the-art electron beam microcharacterization facilities for collaboration with researchers from universities, industry and other government laboratories.

As a national resource to enable scientific advances to support the missions of DOE’s Office of Science, the National Energy Research Scientific Computing Center (http://www.nersc.gov), annually serves approximately 3,000 scientists throughout the United States.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of the time. For more information, please visit science.energy.gov.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>