Neutron diffraction probes forms of carbon dioxide in extreme environments

Adam Makhluf from the University of California, Los Angeles is using neutrons at Oak Ridge National Laboratory's Spallation Neutron Source to study the fundamental role carbon dioxide plays in Earth's carbon cycle, especially in the composition of carbon reservoirs in the deep earth and the evolution of the carbon cycle over time. Credit: Genevieve Martin/ORNL

Through a Deep Carbon Observatory collaboration, Adam Makhluf of the University of California, Los Angeles's Earth, Space and Planetary Science Department and Chris Tulk of Oak Ridge National Laboratory's Chemical and Engineering Materials Division are using neutrons to study the fundamental role carbon dioxide plays in Earth's carbon cycle, especially in the composition of carbon reservoirs in the deep earth and the evolution of the carbon cycle over time.

Makhluf and Tulk are using the SNAP instrument, SNS beam line 3, located at ORNL's Spallation Neutron Source, to provide insight into carbon dioxide's behavior under intense conditions.

“At high pressures and temperatures, it is thought that carbon dioxide can take on unusual bonding arrangements that make it very similar chemically to silicon dioxide,” Makhluf said. “There may be much more carbon than we think inside of the Earth because of substitution reactions with the most ubiquitous oxide on earth, silicon dioxide.”

Studying such specific aspects requires very small samples that can be put under extreme high pressure, a process possible with an apparatus called a diamond anvil cell. This cell pressurizes the sample between two diamonds and allows researchers to place the sample in the neutron beam to produce crystallographic data. Although this high pressure is necessary to analyze the carbon dioxide, high temperatures are also essential to fully interpret the results.

“No one has ever laser heated such a large sample under high pressure,” Makhluf said. “This study is meant to advance neutron science in diamond anvil cells so that other users can investigate samples at extreme temperatures.”

ORNL neutron diffraction experts Reinhard Boehler and Tulk, a SNAP instrument scientist, are important contributors to this technique.

Carbon dioxide is versatile, adapting and producing new forms depending on the pressure and temperature levels. In fact, the carbon dioxide phase known as CO2-V typically emerges under harsh conditions, providing a way to effectively study Earth's mantle.

Despite carbon's notable influence on crucial planetary functions, scientists do not yet understand the details of the high pressure and temperature phases. Some phases are stable as long as they are not subjected to significant disruptions. For example, phase V of carbon dioxide remains metastable even in environments that do not meet the synthesis conditions.

Increasing knowledge about these forms will solidify understanding of carbon interactions in the Earth, providing a foundation on which to base future observations and discoveries.

###

The Deep Carbon Observatory is funded by the Sloan Foundation as a decadal program. SNS is a Department of Energy Office of Science User Facility. UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/

Media Contact

Katie Bethea
betheakl@ornl.gov
865-576-8039

 @ORNL

http://www.ornl.gov 

Media Contact

Katie Bethea EurekAlert!

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors