Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nea Kameni volcano movement captured by Envisat

23.05.2012
Archived data from the Envisat satellite show that the volcanic island of Santorini has recently displayed signs of unrest. Even after the end of its mission, Envisat information continues to be exploited for the long-term monitoring of volcanoes.
Santorini is a picturesque Greek island in the south Aegean Sea and the most active volcanic centre in the South Aegean Volcanic Arc.
The island is the site of one of history’s largest volcanic eruptions, about 3600 years ago. The geological record over the past million years reveals an extensive history of eruptions, with the most recent occurring in 1950.

But despite being dormant for over half a century, satellites have detected slight movements.

These and other findings were presented at the International Forum on Satellite Earth Observation for Geohazard Risk Management, currently under way in Santorini itself.

Organised by ESA in partnership with the Group on Earth Observations (GEO), the forum is focusing on the science and applications of satellite Earth observation to support the management of risks associated with geophysical hazards.

Seismic activity in Santorini, such as the underground movement of magma, from January 2011 to today has caused ground deformation that was detected by Envisat’s radar.

Even from an orbit about 800 km above the ground, deformations of a few centimetres can be detected by satellite radars.

When two or more radar images of the same area are combined, changes in signal reflections between them can be measured. This technique called Differential Interferometric Synthetic Aperture Radar – or DInSAR – has become a useful tool for detecting ground deformation.

Envisat shows that the northeastern part of Santorini’s Nea Kameni volcano experienced an uplift of about 5 cm in 2011, while other areas of the volcano rose some 3–4 cm.

"Monitoring to detect any change of the status of the volcano presents a further step towards the understanding of physical processes related to volcanic eruptions that can lead to natural disasters," said Prof. Issaak Parcharidis from the Department of Geography at the Harokopio University of Athens.

During the first months of this year, Santorini saw a drop in the speed of deformation, accompanied by a reduction in seismic activity.

"After evaluation of local seismic activity, deformation and physicochemical changes, [we] concluded that during the last months the volcano presents a very limited activity, much lower than that of 2011," said Prof. Kosmas Stylianidis, Head of the Special Scientific Committee for the Monitoring of Santorini Volcano.

"The Committee, in its monthly report of April to the government, advises the application of no restrictive measure concerning the mobility of population."

Contact with Envisat was lost on 8 April, but ten years of archived data from the mission will continue to be used by scientists for monitoring volcanoes and many other studies.

The continuation of observation from coming satellite missions, such as the family of Sentinels under Europe’s Global Monitoring for Environment and Security programme, is crucial for ensuring data flow to scientists and operational users dealing with hazard and risk assessment.

Robert Meisner | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/Envisat/SEMEQUYWD2H_0.html

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>