Natural Gas Is a Much-Needed Tool in the Battle to Slow Global Warming

That is the conclusion of a new study by Cornell Professor Lawrence M. Cathles, published in the most recent edition of the peer-reviewed journal Geochemistry, Geophysics and Geosystems. Cathles, a faculty member in Cornell’s Department of Earth and Atmospheric Sciences, reviewed the most recent government and industry data on natural gas “leakage rates” during extraction, as well as recently developed climate models.

He concluded that no matter the timeframe considered, substituting natural gas energy for all coal and some oil production provides about 40 percent of the global warming benefit that a complete switch to low-carbon sources would deliver.

“From a greenhouse point of view, it would be better to replace coal electrical facilities with nuclear plants, wind farms and solar panels, but replacing them with natural gas stations will be faster, cheaper and achieve 40 percent of the low-carbon-fast benefit,” Cathles writes in the study. “Gas is a natural transition fuel that could represent the biggest stabilization wedge available to us.”

Cathles study, “Assessing the Greenhouse Impact of Natural Gas,” includes additional findings about expanding the use of natural gas as an energy source, and the climate impact of “unconventional” gas drilling methods, including hydraulic fracturing in shale formations. They include:

• Although a more rapid transition to natural gas from coal and some oil produces a greater overall benefit for climate change, the 40-percent of low-carbon energy benefit remains no matter how quickly the transition is made, and no matter the effect of ocean modulation or other climate regulating forces.

• Although some critics of natural gas as a transition fuel have cited leakage rates as high as 8 percent or more of total production during drilling – particularly hydraulic fracturing extraction – more recent industry data and a critical examination of Environmental Protection Agency data supports leakage rates closer to 1.5 percent for both conventional and hydrofractured wells.

• Even at higher leakage rates, using natural gas as a transition to low-carbon energy sources is still a better policy than “business as usual” with coal and oil, due to the different rates of decay (and hence long-term global warming effect) of CO2 released in greater amounts by burning coal and oil and any methane released during natural gas extraction.

• Using natural gas as a transition fuel supports the push to low-carbon sources by providing the “surge capacity” when needed, or a buffer when solar and wind production wanes.

“The most important message of the calculations reported here is that substituting natural gas for coal and oil is a significant way to reduce greenhouse forcing, regardless of how long the substitution takes,” Cathles writes. “A faster transition to low-carbon energy sources would decrease greenhouse warming further, but the substitution of natural gas for other fossil fuels is equally beneficial in percentage terms no matter how fast the transition.”

Cathles’ study can be found online at: http://bit.ly/NiAsaG.

Geochemistry, Geophysics and Geosystems is an online journal published by the nonprofit American Geophysical Union. Cathles’ research received no outside funding.

Contact the Press Relations Office for information about Cornell's TV and radio studios.

Media Contact

John Carberry Newswise Science News

More Information:

http://www.cornell.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors