Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural deep earth pump fuels earthquakes and ore

22.06.2009
For the first time scientists have discovered the presence of a natural deep earth pump that is a crucial element in the formation of ore deposits and earthquakes.

The process, called creep cavitation, involves fluid being pumped through pores in deformed rock in mid-crustal sheer zones, which are approximately 15 km below the Earth's surface.

The fluid transfer through the middle crust also plays a key role in tectonic plate movement and mantle degassing.

The discovery was made by examining one millimetre sized cubes of exposed rock in Alice Springs, which was deformed around 320 million years ago during a period of natural mountain formation.

The evidence is described in a paper published in the latest edition of Nature entitled Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones.

One of the paper's author's CSIRO Exploration and Mining scientist Dr Rob Hough said that this was the first direct observation of fluids moving through the mid-crustal shear zone.

"We are seeing the direct evidence for one of the processes that got ore forming fluids moving up from the mantle to the shallow crust to form the ore deposits we mine today, it is also one of the mechanisms that can lead to earthquakes in the middle crust," Dr Hough said.

Research leader Dr Florian Fusseis, from the University of Western Australia, said that the discovery could provide valuable information in understanding how earthquakes are formed.

"While we understand reasonably well why earthquakes happen in general, due to stress build-up caused by motions of tectonic plates, the triggering of earthquakes is much more complex," Dr Fusseis said.

"To understand the 'where' and 'when' of earthquakes, the 'how' needs to be understood first. We know that earthquakes nucleate by failure on a small part of a shear zone."

Dr Fusseis said that while their sample did not record an earthquake it gave them an insight into the structures that could be very small and localized precursors of seismic failure planes.

The discovery was made possible through the use of high-resolution Synchrotron X-ray tomographic, scanning electron microscope observations at the nanoscale and advanced visualisation using iVEC in Western Australia.

The authors of the paper propose that the fluid movement, described as the granular fluid pump, is a self sustaining process where pores open and close allowing fluid and gas to be pumped out.

The paper was written by five authors from CSIRO Exploration and Mining working through the Minerals Down Under National Research Flagship, The School of Earth & Environmental Sciences, University of Western Australia and Advanced Photon Source, and Argonne National Laboratory, USA.

Three of the authors are with CSIRO: Prof Klaus Regenauer-Lieb who shares his time between CSIRO and the University of Western Australia and is also a WA Premiers Fellow; Dr Jie Liu and Dr Rob Hough.

The experiments at the Advanced Photon Source in Chicago were funded in part by the Australian Synchrotron Research Program.

CSIRO initiated the National Research Flagships to provide science-based solutions in response to Australia's major research challenges and opportunities. The nine Flagships form multidisciplinary teams with industry and the research community to deliver impact and benefits for Australia.

Image available at: http://www.scienceimage.csiro.au/mediarelease/mr09-100.html

Further Information:
Rob Hough, Minerals Down Under Flagship
Ph:08 6436 8763
E: Robert.Hough@csiro.au
Media Assistance:
Bob Chamberlain, Minerals Down Under Flagship
Ph:07 3327 4469
Mb:0471 844 308
E: Bob.Chamberlain@csiro.au

Bob Chamberlain | EurekAlert!
Further information:
http://www.csiro.au

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>