Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Natural deep earth pump fuels earthquakes and ore

For the first time scientists have discovered the presence of a natural deep earth pump that is a crucial element in the formation of ore deposits and earthquakes.

The process, called creep cavitation, involves fluid being pumped through pores in deformed rock in mid-crustal sheer zones, which are approximately 15 km below the Earth's surface.

The fluid transfer through the middle crust also plays a key role in tectonic plate movement and mantle degassing.

The discovery was made by examining one millimetre sized cubes of exposed rock in Alice Springs, which was deformed around 320 million years ago during a period of natural mountain formation.

The evidence is described in a paper published in the latest edition of Nature entitled Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones.

One of the paper's author's CSIRO Exploration and Mining scientist Dr Rob Hough said that this was the first direct observation of fluids moving through the mid-crustal shear zone.

"We are seeing the direct evidence for one of the processes that got ore forming fluids moving up from the mantle to the shallow crust to form the ore deposits we mine today, it is also one of the mechanisms that can lead to earthquakes in the middle crust," Dr Hough said.

Research leader Dr Florian Fusseis, from the University of Western Australia, said that the discovery could provide valuable information in understanding how earthquakes are formed.

"While we understand reasonably well why earthquakes happen in general, due to stress build-up caused by motions of tectonic plates, the triggering of earthquakes is much more complex," Dr Fusseis said.

"To understand the 'where' and 'when' of earthquakes, the 'how' needs to be understood first. We know that earthquakes nucleate by failure on a small part of a shear zone."

Dr Fusseis said that while their sample did not record an earthquake it gave them an insight into the structures that could be very small and localized precursors of seismic failure planes.

The discovery was made possible through the use of high-resolution Synchrotron X-ray tomographic, scanning electron microscope observations at the nanoscale and advanced visualisation using iVEC in Western Australia.

The authors of the paper propose that the fluid movement, described as the granular fluid pump, is a self sustaining process where pores open and close allowing fluid and gas to be pumped out.

The paper was written by five authors from CSIRO Exploration and Mining working through the Minerals Down Under National Research Flagship, The School of Earth & Environmental Sciences, University of Western Australia and Advanced Photon Source, and Argonne National Laboratory, USA.

Three of the authors are with CSIRO: Prof Klaus Regenauer-Lieb who shares his time between CSIRO and the University of Western Australia and is also a WA Premiers Fellow; Dr Jie Liu and Dr Rob Hough.

The experiments at the Advanced Photon Source in Chicago were funded in part by the Australian Synchrotron Research Program.

CSIRO initiated the National Research Flagships to provide science-based solutions in response to Australia's major research challenges and opportunities. The nine Flagships form multidisciplinary teams with industry and the research community to deliver impact and benefits for Australia.

Image available at:

Further Information:
Rob Hough, Minerals Down Under Flagship
Ph:08 6436 8763
Media Assistance:
Bob Chamberlain, Minerals Down Under Flagship
Ph:07 3327 4469
Mb:0471 844 308

Bob Chamberlain | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>