Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Views a Transitioning Tropical-Storm Pabuk

27.09.2013
Typhoon Pabuk weakened and the core of the storm was changing from a warm core tropical system to a cold core low pressure system as it continued paralleling the coast of Japan on Sept. 26. NASA's Aqua satellite provided a visible image of the transforming storm that had lost its eye.

On Sept. 26, 2013 at 03:55 UTC/Sept. 25 at 11:55 p.m. EDT, the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible image of Tropical Storm Pabuk skirting eastern Japan. MODIS imagery also showed a steady influx of cold air stratocumulus clouds into the low-level center of Pabuk, which was helping transition the storm.


On Sept. 26, 2013 at 03:55 UTC/11:55 p.m. Sept. 25 EDT, the MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Storm Pabuk skirting eastern Japan.
Image Credit: NASA Goddard MODIS Rapid Response Team

On Sept. 26 at 1500 UTC/11 a.m. EDT, Extra-tropical storm Pabuk had maximum sustained winds near 60 knots/69 mph/111 kph. The center of Pabuk was located near 34.9 north and 146.7 east, about 441 nm south-southeast of Misawa, Japan. Pabuk continued to track to the northeast and has sped up to 25 knots/28.7 mph/46.3 kph per hour.

Satellite data revealed that Pabuk's low-level center has become elongated and more ragged on Sept. 26. The Joint Typhoon Warning Center noted that the entire tropical cyclone appears more asymmetrical and fragmented.

Pabuk is now part of a baroclinic cold air mass and is rapidly transforming into an extra-tropical cyclone. By the end of the day on Sept. 26, Pabuk is expected to be a cold core low pressure system over the open waters of the Northwestern Pacific Ocean, and the Joint Typhoon Warning Center issued its final advisory on Pabuk.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/98w-northwestern-pacific-ocean/

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>