NASA saw Tropical Storm Haruna come together

The sixteenth tropical cyclone of the Southern Indian Ocean season formed in the Mozambique Channel, and the MODIS instrument aboard NASA's Terra satellite captured this visible image of Tropical Storm Haruna on Feb. 19 at 0745 UTC.<br><br>Credit: NASA Goddard MODIS Rapid Response Team<br>

A low pressure area called System 94S developed on Friday, Feb. 15 in the northern Mozambique Channel. Over the course of four days System 94S became more organized and by Feb. 19 it became Tropical Storm Haruna.

On Tuesday, Feb. 19, Tropical Storm Haruna had maximum sustained winds near 35 knots (40.2 mph/64.8 kph). Haruna was located in the Mozambique Channel, near 21.4 south latitude and 40.9 east longitude, about 375 nautical miles (431.5 miles/694.5 km) west-southwest of Antananarivo, Madagascar. Microwave satellite imagery from the AMSU-B instrument confirmed the location of Haruna's low-level center. Haruna is moving south at 5 knots (5.7 mph/9.2 kph).

Infrared imagery from NASA's Atmospheric Infrared Sounder (AIRS) instrument taken on Feb. 18 and Feb. 19 showed the development of Haruna from a depression into a tropical storm. AIRS imagery on Feb. 19 indicated that the low-level circulation center was well-defined and symmetrical. The area of strongest thunderstorms appeared around the center of circulation and in a band of thunderstorms around the south and east of the center where cloud top temperatures were colder than -63F (-52C). The AIRS data on Feb. 19 also showed that the band of thunderstorms east of the center became fragmented over eastern Madagascar.

An instrument aboard NASA's Terra satellite called the Moderate Resolution Imaging Spectroradiometer, also known as “MODIS” captured a visible image of Tropical Storm Haruna on Feb. 19 at 0745 UTC (2:45 a.m. EST). The image showed the center of Haruna over the southern Mozambique Channel, between Mozambique on the African mainland to the west, and the island nation of Madagascar east. Haruna's eastern bands of thunderstorms were draped over Madagascar bringing showers, thunderstorms and gusty winds to the island.

The MODIS image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center in Greenbelt, Md.

According to forecasters at the Joint Typhoon Warning Center (JTWC), the organization that forecasts tropical cyclones in the Indian Ocean, Haruna is being guided by a low-to-mid-level subtropical ridge (elongated area) of high pressure and is expected to continue moving south until a low pressure area turns the tropical storm southeast.

Forecasters at the JTWC expect that Haruna will intensify over the next day or two and make a brief landfall over southern Madagascar. Haruna is expected to re-emerge into open ocean and vertical wind shear is forecast to increase with the low pressure area, weakening the storm.

Media Contact

Rob Gutro EurekAlert!

More Information:

http://www.nasa.gov

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors