Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA saw Tropical Storm Haruna come together

20.02.2013
Tropical Storm Haruna came together on Feb. 19 in the Southern Indian Ocean and two NASA satellites provided visible and infrared imagery that helped forecasters see the system's organization.

A low pressure area called System 94S developed on Friday, Feb. 15 in the northern Mozambique Channel. Over the course of four days System 94S became more organized and by Feb. 19 it became Tropical Storm Haruna.


The sixteenth tropical cyclone of the Southern Indian Ocean season formed in the Mozambique Channel, and the MODIS instrument aboard NASA's Terra satellite captured this visible image of Tropical Storm Haruna on Feb. 19 at 0745 UTC.

Credit: NASA Goddard MODIS Rapid Response Team

On Tuesday, Feb. 19, Tropical Storm Haruna had maximum sustained winds near 35 knots (40.2 mph/64.8 kph). Haruna was located in the Mozambique Channel, near 21.4 south latitude and 40.9 east longitude, about 375 nautical miles (431.5 miles/694.5 km) west-southwest of Antananarivo, Madagascar. Microwave satellite imagery from the AMSU-B instrument confirmed the location of Haruna's low-level center. Haruna is moving south at 5 knots (5.7 mph/9.2 kph).

Infrared imagery from NASA's Atmospheric Infrared Sounder (AIRS) instrument taken on Feb. 18 and Feb. 19 showed the development of Haruna from a depression into a tropical storm. AIRS imagery on Feb. 19 indicated that the low-level circulation center was well-defined and symmetrical. The area of strongest thunderstorms appeared around the center of circulation and in a band of thunderstorms around the south and east of the center where cloud top temperatures were colder than -63F (-52C). The AIRS data on Feb. 19 also showed that the band of thunderstorms east of the center became fragmented over eastern Madagascar.

An instrument aboard NASA's Terra satellite called the Moderate Resolution Imaging Spectroradiometer, also known as "MODIS" captured a visible image of Tropical Storm Haruna on Feb. 19 at 0745 UTC (2:45 a.m. EST). The image showed the center of Haruna over the southern Mozambique Channel, between Mozambique on the African mainland to the west, and the island nation of Madagascar east. Haruna's eastern bands of thunderstorms were draped over Madagascar bringing showers, thunderstorms and gusty winds to the island.

The MODIS image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center in Greenbelt, Md.

According to forecasters at the Joint Typhoon Warning Center (JTWC), the organization that forecasts tropical cyclones in the Indian Ocean, Haruna is being guided by a low-to-mid-level subtropical ridge (elongated area) of high pressure and is expected to continue moving south until a low pressure area turns the tropical storm southeast.

Forecasters at the JTWC expect that Haruna will intensify over the next day or two and make a brief landfall over southern Madagascar. Haruna is expected to re-emerge into open ocean and vertical wind shear is forecast to increase with the low pressure area, weakening the storm.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>