Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA saw Tropical Storm Haruna come together

20.02.2013
Tropical Storm Haruna came together on Feb. 19 in the Southern Indian Ocean and two NASA satellites provided visible and infrared imagery that helped forecasters see the system's organization.

A low pressure area called System 94S developed on Friday, Feb. 15 in the northern Mozambique Channel. Over the course of four days System 94S became more organized and by Feb. 19 it became Tropical Storm Haruna.


The sixteenth tropical cyclone of the Southern Indian Ocean season formed in the Mozambique Channel, and the MODIS instrument aboard NASA's Terra satellite captured this visible image of Tropical Storm Haruna on Feb. 19 at 0745 UTC.

Credit: NASA Goddard MODIS Rapid Response Team

On Tuesday, Feb. 19, Tropical Storm Haruna had maximum sustained winds near 35 knots (40.2 mph/64.8 kph). Haruna was located in the Mozambique Channel, near 21.4 south latitude and 40.9 east longitude, about 375 nautical miles (431.5 miles/694.5 km) west-southwest of Antananarivo, Madagascar. Microwave satellite imagery from the AMSU-B instrument confirmed the location of Haruna's low-level center. Haruna is moving south at 5 knots (5.7 mph/9.2 kph).

Infrared imagery from NASA's Atmospheric Infrared Sounder (AIRS) instrument taken on Feb. 18 and Feb. 19 showed the development of Haruna from a depression into a tropical storm. AIRS imagery on Feb. 19 indicated that the low-level circulation center was well-defined and symmetrical. The area of strongest thunderstorms appeared around the center of circulation and in a band of thunderstorms around the south and east of the center where cloud top temperatures were colder than -63F (-52C). The AIRS data on Feb. 19 also showed that the band of thunderstorms east of the center became fragmented over eastern Madagascar.

An instrument aboard NASA's Terra satellite called the Moderate Resolution Imaging Spectroradiometer, also known as "MODIS" captured a visible image of Tropical Storm Haruna on Feb. 19 at 0745 UTC (2:45 a.m. EST). The image showed the center of Haruna over the southern Mozambique Channel, between Mozambique on the African mainland to the west, and the island nation of Madagascar east. Haruna's eastern bands of thunderstorms were draped over Madagascar bringing showers, thunderstorms and gusty winds to the island.

The MODIS image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center in Greenbelt, Md.

According to forecasters at the Joint Typhoon Warning Center (JTWC), the organization that forecasts tropical cyclones in the Indian Ocean, Haruna is being guided by a low-to-mid-level subtropical ridge (elongated area) of high pressure and is expected to continue moving south until a low pressure area turns the tropical storm southeast.

Forecasters at the JTWC expect that Haruna will intensify over the next day or two and make a brief landfall over southern Madagascar. Haruna is expected to re-emerge into open ocean and vertical wind shear is forecast to increase with the low pressure area, weakening the storm.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>