Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA saw Tropical Storm Haruna come together

20.02.2013
Tropical Storm Haruna came together on Feb. 19 in the Southern Indian Ocean and two NASA satellites provided visible and infrared imagery that helped forecasters see the system's organization.

A low pressure area called System 94S developed on Friday, Feb. 15 in the northern Mozambique Channel. Over the course of four days System 94S became more organized and by Feb. 19 it became Tropical Storm Haruna.


The sixteenth tropical cyclone of the Southern Indian Ocean season formed in the Mozambique Channel, and the MODIS instrument aboard NASA's Terra satellite captured this visible image of Tropical Storm Haruna on Feb. 19 at 0745 UTC.

Credit: NASA Goddard MODIS Rapid Response Team

On Tuesday, Feb. 19, Tropical Storm Haruna had maximum sustained winds near 35 knots (40.2 mph/64.8 kph). Haruna was located in the Mozambique Channel, near 21.4 south latitude and 40.9 east longitude, about 375 nautical miles (431.5 miles/694.5 km) west-southwest of Antananarivo, Madagascar. Microwave satellite imagery from the AMSU-B instrument confirmed the location of Haruna's low-level center. Haruna is moving south at 5 knots (5.7 mph/9.2 kph).

Infrared imagery from NASA's Atmospheric Infrared Sounder (AIRS) instrument taken on Feb. 18 and Feb. 19 showed the development of Haruna from a depression into a tropical storm. AIRS imagery on Feb. 19 indicated that the low-level circulation center was well-defined and symmetrical. The area of strongest thunderstorms appeared around the center of circulation and in a band of thunderstorms around the south and east of the center where cloud top temperatures were colder than -63F (-52C). The AIRS data on Feb. 19 also showed that the band of thunderstorms east of the center became fragmented over eastern Madagascar.

An instrument aboard NASA's Terra satellite called the Moderate Resolution Imaging Spectroradiometer, also known as "MODIS" captured a visible image of Tropical Storm Haruna on Feb. 19 at 0745 UTC (2:45 a.m. EST). The image showed the center of Haruna over the southern Mozambique Channel, between Mozambique on the African mainland to the west, and the island nation of Madagascar east. Haruna's eastern bands of thunderstorms were draped over Madagascar bringing showers, thunderstorms and gusty winds to the island.

The MODIS image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center in Greenbelt, Md.

According to forecasters at the Joint Typhoon Warning Center (JTWC), the organization that forecasts tropical cyclones in the Indian Ocean, Haruna is being guided by a low-to-mid-level subtropical ridge (elongated area) of high pressure and is expected to continue moving south until a low pressure area turns the tropical storm southeast.

Forecasters at the JTWC expect that Haruna will intensify over the next day or two and make a brief landfall over southern Madagascar. Haruna is expected to re-emerge into open ocean and vertical wind shear is forecast to increase with the low pressure area, weakening the storm.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

nachricht Thawing permafrost releases old greenhouse gas
19.07.2017 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>