Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA saw Tropical Storm Haruna come together

Tropical Storm Haruna came together on Feb. 19 in the Southern Indian Ocean and two NASA satellites provided visible and infrared imagery that helped forecasters see the system's organization.

A low pressure area called System 94S developed on Friday, Feb. 15 in the northern Mozambique Channel. Over the course of four days System 94S became more organized and by Feb. 19 it became Tropical Storm Haruna.

The sixteenth tropical cyclone of the Southern Indian Ocean season formed in the Mozambique Channel, and the MODIS instrument aboard NASA's Terra satellite captured this visible image of Tropical Storm Haruna on Feb. 19 at 0745 UTC.

Credit: NASA Goddard MODIS Rapid Response Team

On Tuesday, Feb. 19, Tropical Storm Haruna had maximum sustained winds near 35 knots (40.2 mph/64.8 kph). Haruna was located in the Mozambique Channel, near 21.4 south latitude and 40.9 east longitude, about 375 nautical miles (431.5 miles/694.5 km) west-southwest of Antananarivo, Madagascar. Microwave satellite imagery from the AMSU-B instrument confirmed the location of Haruna's low-level center. Haruna is moving south at 5 knots (5.7 mph/9.2 kph).

Infrared imagery from NASA's Atmospheric Infrared Sounder (AIRS) instrument taken on Feb. 18 and Feb. 19 showed the development of Haruna from a depression into a tropical storm. AIRS imagery on Feb. 19 indicated that the low-level circulation center was well-defined and symmetrical. The area of strongest thunderstorms appeared around the center of circulation and in a band of thunderstorms around the south and east of the center where cloud top temperatures were colder than -63F (-52C). The AIRS data on Feb. 19 also showed that the band of thunderstorms east of the center became fragmented over eastern Madagascar.

An instrument aboard NASA's Terra satellite called the Moderate Resolution Imaging Spectroradiometer, also known as "MODIS" captured a visible image of Tropical Storm Haruna on Feb. 19 at 0745 UTC (2:45 a.m. EST). The image showed the center of Haruna over the southern Mozambique Channel, between Mozambique on the African mainland to the west, and the island nation of Madagascar east. Haruna's eastern bands of thunderstorms were draped over Madagascar bringing showers, thunderstorms and gusty winds to the island.

The MODIS image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center in Greenbelt, Md.

According to forecasters at the Joint Typhoon Warning Center (JTWC), the organization that forecasts tropical cyclones in the Indian Ocean, Haruna is being guided by a low-to-mid-level subtropical ridge (elongated area) of high pressure and is expected to continue moving south until a low pressure area turns the tropical storm southeast.

Forecasters at the JTWC expect that Haruna will intensify over the next day or two and make a brief landfall over southern Madagascar. Haruna is expected to re-emerge into open ocean and vertical wind shear is forecast to increase with the low pressure area, weakening the storm.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>