Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study shows desert dust cuts Colorado River flow

21.09.2010
Snowmelt in the Colorado River basin is occurring earlier, reducing runoff and the amount of crucial water available downstream. A new study shows this is due to increased dust caused by human activities in the region during the past 150 years.

The study, led by a NASA scientist and funded by the agency and the National Science Foundation, showed peak spring runoff now comes three weeks earlier than before the region was settled and soils were disturbed. Annual runoff is lower by more than five percent on average compared to pre-settlement levels.

The findings have major implications for the 27 million people in the seven U.S. states and Mexico who rely on the Colorado River for drinking, agricultural and industrial water. The results were published in this week's Proceedings of the National Academy of Sciences.

The research team was led by Tom Painter, a snow hydrologist at both NASA's Jet Propulsion Laboratory in Pasadena, Calif., and UCLA. The team examined the impact of human-produced dust deposits on mountain snowpacks over the Upper Colorado River basin between 1915 and 2003. Studies of lake sediment cores showed the amount of dust falling in the Rocky Mountains increased by 500 to 600 percent since the mid-to-late 1800s, when grazing and agriculture began to disturb fragile but stable desert soils.

The team used an advanced hydrology model to simulate the balance of water flowing into and out of the river basin under current dusty conditions, and those that existed before soil was disturbed. Hydrologic data gathered from field studies funded by NASA and the National Science Foundation, and measurements of the absorption of sunlight by dust in snow, were combined with the modeling.

More than 80 percent of sunlight falling on fresh snow is typically reflected back into space. In the semi-arid regions of the Colorado Plateau and Great Basin, winds blow desert dust east, triggering dust-on-snow events. When dark dust particles fall on snow, they reduce its ability to reflect sunlight. The snow also absorbs more of the sun's energy. This darker snow cover melts earlier, with some water evaporating into the atmosphere.

Earlier melt seasons expose vegetation sooner, and plants lose water to the atmosphere through the exhalation of vapor. The study shows an annual average of approximately 35-billion cubic feet of water is lost from this exhalation and the overall evaporation that would otherwise feed the Colorado River. This is enough water to supply Los Angeles for 18 months.

"The compressed mountain runoff period makes water management more difficult than a slower runoff," Painter said. "With the more rapid runoff under dust-accelerated melt, costly errors are more likely to be made when water is released from and captured in Colorado River reservoirs."

Prior to the study, scientists and water managers had a poor understanding of dust-on-snow events. Scientists knew from theory and modeling studies that dust could be changing the way snowfields reflect and absorb sunlight, but no one had measured its full impact on snowmelt rates and runoff over the river basin. The team addressed these uncertainties by making systematic measurements of the sources, frequency and snowmelt impact of dust-on-snow events.

"These researchers brought together their collective expertise to provide a historical context for how the Colorado River and its runoff respond to dust deposition on snow," said Anjuli Bamzai, program director in the National Science Foundation's Division of Atmospheric and Geospace Sciences in Arlington, Va. "The work lays the foundation for future sound water resource management."

Painter believes steps can be taken to reduce the severity of dust-on-snow events in the Colorado River basin. He points to the impact of the Taylor Grazing Act of 1934 for potential guidance on how dust loads can be reduced. The act regulated grazing on public lands to improve rangeland conditions. Lake sediment studies show it decreased the amount of dust falling in the Rocky Mountains by about one quarter.

"Restoration of desert soils could increase the duration of snow cover, simplifying water management, increasing water supplies and reducing the need for additional reservoir storage of water. Peak runoff under cleaner conditions would then come later in summer, when agricultural and other water demands are greater," Painter said.

"It could also at least partially mitigate the expected regional impacts of climate change, which include reduced Colorado River flows, increased year-to-year variability in its flow rate, and more severe and longer droughts," he added. "Climate models project a seven to 20 percent reduction in Colorado River basin runoff in this century due to climate change."

Other institutions participating in the study include the National Snow and Ice Center in Boulder, Colo.; U.S. Geological Survey Southwest Biological Center in Moab, Utah; University of Washington in Seattle; Center for Snow and Avalanche Studies in Silverton, Colo.; and the University of Colorado-NOAA Western Water Assessment in Boulder.

http://www.jpl.nasa.gov/news/news.cfm?release=2010-306

Written by: Alan Buis
NASA's Jet Propulsion Laboratory

Alan Buis | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>