Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Study Points to Infrared-Herring in Apparent Amazon Green-Up

07.02.2014
For the past eight years, scientists have been working to make sense of why some satellite data seemed to show the Amazon rain forest "greening-up" during the region's dry season each year from June to October. The green-up indicated productive, thriving vegetation in spite of limited rainfall.

Now, a new NASA study published today in the journal Nature shows that the appearance of canopy greening is not caused by a biophysical change in Amazon forests, but instead by a combination of shadowing within the canopy and the way that satellite sensors observe the Amazon during the dry season.


This natural-color image shows the importance of sun-sensor geometry. On the left, sunlight is backscattered by the Amazon rain forest, making green leaves appear brighter in some areas. To the right, sunglint makes the dark waters of the Amazon River and flooded wetlands appear silver or white. Image Credit: NASA's Earth Observatory

Correcting for this artifact in the data, Doug Morton, of NASA's Goddard Space Flight Center in Greenbelt, Md., and colleagues show that Amazon forests, at least on the large scale, maintain a fairly constant greenness and canopy structure throughout the dry season. The findings have implications for how scientists seek to understand seasonal and interannual changes in Amazon forests and other ecosystems.

"Scientists who use satellite observations to study changes in Earth's vegetation need to account for seasonal differences in the angles of solar illumination and satellite observation," Morton said.

Isolating the apparent green-up mechanism

The MODIS, or Moderate Resolution Imaging Spectroradiometer, sensors that fly aboard NASA's Terra and Aqua satellites make daily observations over the huge expanse of Amazon forests. An area is likely covered in green vegetation if sensors detect a relatively small amount of red light – absorbed in abundance by plants for photosynthesis – but see a large amount of near-infrared light, which plants primarily reflect. Scientists use the ratio of red and near-infrared light as a measure of vegetation "greenness."

Numerous hypotheses have been put forward to explain why Amazon forests appear greener in MODIS data as the dry season progresses. Perhaps young leaves, known to reflect more near-infrared light, replace old leaves? Or, possibly trees add more leaves to capture sunlight in the dry season when the skies are less cloudy.

Unsettled by the lack of definitive evidence explaining the magnitude of the green-up, Morton and colleagues set out to better characterize the phenomenon. They culled satellite observations from MODIS and NASA's Ice Cloud and land Elevation Satellite (ICESat) Geosciences Laser Altimeter System (GLAS), which can provide an independent check on the seasonal differences in Amazon forest structure.

The team next used a theoretical model to demonstrate how changes in forest structure or reflectance properties have distinct fingerprints in MODIS and GLAS data. Only one of the hypothesized mechanisms for the green-up, changes in sun-sensor geometry, was consistent with the satellite observations.

"We think we have uncovered the mechanism for the appearance of seasonal greening of Amazon forests – shadowing within the canopy that changes the amount of near-infrared light observed by MODIS," Morton said.

Seeing the Amazon in a new light

In June, when the sun is as low and far north as it will get, shadows are abundant. By September, around the time of the equinox, Amazon forests at the equator are illuminated from directly overhead. At this point the forest canopy is shadow-free, highly reflective in the infrared, and therefore very green according to some satellite vegetation indices.

"Around the equinox, the MODIS sensor takes the 'perfect picture' with no shadows," Morton said. "The change in shadows is amplified in MODIS data because the sun is directly behind the sensor at the equinox. This seasonal change in MODIS greenness has nothing to do with how forests are changing."

In fact, accounting for the changing geometry between the sun and satellite sensor paints a picture of the Amazon that, as a whole, doesn't change much through the dry season.

"Additional work is needed to verify these results with field measurements, and to explore the influence of drought on corrected vegetation indices," said Scott Goetz, an ecologist at Woods Hole Research Center in Woods Hole, Mass., who was not involved with the Nature study. "But past interpretations of productivity changes need to be reconsidered in light of these new results."

Looking forward, Morton sees the results as a reminder and opportunity for remote sensing scientists to work more closely with ground-based ecosystem scientists.

"Scaling our knowledge of forest canopies from measurements of individual leaves to satellite observations of the entire Amazon basin requires a deep understanding of both forest ecology and remote sensing science," Morton said. "This interdisciplinary collaboration is critical to improve our understanding of the patterns and processes driving changes in vegetation productivity."

Kathryn Hansen
NASA's Earth Science News Team

Kathryn Hansen | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht The most accurate optical single-ion clock worldwide
10.02.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Unusual cold spell in the stratosphere creates conditions for severe ozone depletion in the Arctic
10.02.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>