Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA saw strong T-storms in quick-forming Hermine's center, warm water to power it

08.09.2010
Tropical Storm Hermine formed very quickly yesterday in the very warm waters of the Gulf of Mexico, and northeastern Mexico and southeastern Texas are now bearing the brunt of the storm. Infrared imagery taken from NASA's AIRS instrument showed a quick organization of strong thunderstorms around Hermine's center of circulation and very warm Gulf waters that powered her up.

At 11 p.m. EDT on September 6, Hermine made landfall as a strong tropical storm producing heavy rains over northeastern Mexico and South Texas.

This morning there's a tropical storm warning in effect from Bahia Algodones, Mexico Northward to Port O'Connor, Texas as Hermine is continuing to move inland in a north-northwest direction at 17 mph. At 8 a.m. EDT, Hermine's maximum sustained winds had decreased from their peak of 60 mph to 45 mph now that she's over land in south Texas. She's centered near 27.7 North and 98.2 West, which is about 35 miles southwest of Mathis, Texas. Mathis is about 171 miles north of Brownsville, Texas, the southernmost city in the state. Minimum central pressure is 991 millibars.

Tropical Storm Hermine formed quickly in the extreme western Gulf of Mexico on Labor Day in the U.S., Monday, September 6. On Friday, Sept. 4, forecasters were watching a low pressure area, and two days later, even close to the coast tropical depression 11 formed and quickly strengthened into a tropical storm.

Infrared imagery from NASA's Aqua satellite instrument the Atmospheric Infrared Sounder (AIRS) captured Tropical Storm Hermine right after she formed on Sept. 6 at 19:53 UTC (3:53 p.m. EDT), showed strong convection and strong, high thunderstorms around the center of circulation indicating an organized tropical storm. AIRS data also showed that that sea surface temperatures where Hermine formed yesterday were about 86 degrees Fahrenheit (30 Celsius), way above the 80F threshold needed to power a tropical cyclone.

A large threat from Hermine is extreme rainfall. She's expected to produce between 4 and 8 inches of rain with isolated totals up to 12 inches from southern Texas northward through northern Texas and into central and eastern Oklahoma. The National Hurricane Center noted that the rains are expected to continue spreading northeastward into Kansas, northwestern Arkansas and Missouri over the next few days and could caused life-threatening flash floods.

The visible satellite image from the GOES-13 satellite at 11:31 UTC (7:31 a.m. EDT) on Sept. 7, 2010, showed the large extent of Tropical Storm Hermine's clouds stretching north into Oklahoma, Missouri and Arkansas, and south into northern Mexico. GOES-13 is one of the Geostationary Operational Environmental Satellites operated by NOAA. NASA's GOES Project at NASA's Goddard Space Flight Center, in Greenbelt, Md. creates images and animations from GOES satellite data.

Meanwhile, tropical-storm force winds are expected in the warning area, and isolated tornadoes are possible across portions of southeast Texas through today.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>