Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA: Songda becomes a super typhoon

27.05.2011
NASA's 3-D rotating satellite-view of Songda

As predicted, Typhoon Songda intensified and was a super typhoon with wind speeds estimated at over 130 knots ( ~145 mph) when NASA's TRMM satellite passed directly over head on May 26, 2011 at 0806 UTC (4:06 a.m. EDT).


Songda had a circular eye with extremely heavy rainfall, particularly in the southeast quadrant. The red areas represent heavy rainfall (falling at about 2 inches/50 mm per hour). The yellow and green areas are moderate rainfall, falling at a rate between .78 to 1.57 inches (20 to 40 mm) per hour. Credit: NASA/SSAI, Hal Pierce

The Tropical Rainfall Measuring Mission (TRMM) satellite captured the heavy rainfall rates within the super typhoon using TRMM's Visible and InfraRed Scanner (VIRS) instrument. The rainfall analysis from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) data showed that Songda had a circular eye with extremely heavy rainfall (as much as 2 inches/50 mm per hour) particularly in the southeast quadrant. TRMM's PR instrument data showed the concentric rain bands typical of powerful typhoons.

Warnings are in effect in the Philippines today. Public storm warning signal no 1 is in effect in the following provinces: Luzon: Catanduanes, Camarines Sur & Norte, Quirino, Albay, Aurora, Quezon Provinces, Polilio Island, Cagayan and Isabela.

At 1500 UTC (11 a.m. EDT) on May 26, Super Typhoon Songda (called Chedeng in the Philippines) had maximum sustained winds near 140 knots (161 mph/259 kmh). Typhoon-strength winds extend 45 miles out from the center, while tropical storm-force winds extend 155 miles from the center, making Songda over 300 miles wide.

Songda's center was 250 miles east-northeast of Manila, near 16.2 North and 125.1 East. It was moving northwest near 8 knots (9 mph/15 kmh). Songda is creating very rough and dangerous seas in Philippine Sea, with wave heights reaching 38 feet (11.5 meters).

Songda has intensified in favorable conditions as the forecasters at the Joint Typhoon Warning Center predicted. Songda may have reached its peak intensity and is forecast to start turning to the northeast and weaken because of increased wind shear.

Songda will then start to veer northeast and weaken due to deteriorating atmospheric conditions.

Taiwan has already posted Marine Warnings for May 27 and 28, forecasting wave heights to increase from 2 meters (~6.5 feet) to as much as 6 meters (~20 feet) on east-facing shorelines as Super Typhoon Sondga moves past (it will stay off-shore and track to the east of Taiwan). The current track from the Joint Typhoon Warning Center takes Songda over the island of Kadena on May 28, and then skirting the east coast of Japan as it continues on a northeasterly track over the weekend.

Check out the 3-D rotating look at Super Typhoon Songda from NASA's TRMM satellite at: http://www.nasa.gov/mission_pages/hurricanes/archives/2011/h2011_Songda.html

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>